Difference between revisions of "2007 AIME II Problems/Problem 15"

(Solution)
(Solution)
Line 33: Line 33:
  
 
The solution is <math>260+129=\boxed{389}</math>.
 
The solution is <math>260+129=\boxed{389}</math>.
 
=== Diagram for Solution 1 ===
 
Here is a diagram illustrating solution 1. Note that unlike in the solution <math>O</math> refers to the circumcenter of <math>\triangle ABC</math>. Instead, <math>O_\omega</math> is used for the center of the third circle, <math>\omega</math>.
 
 
[asy]
 
unitsize(0.75cm);
 
pair A, B, C, Oa, Ob, Oc, Od, O, I;
 
path circ1, circ2;
 
 
// Homotethy factor - backplugged from solution
 
real k = 64/129;
 
real r = 260/129;
 
 
B = (0, 0);
 
C = (14, 0);
 
 
circ1 = circle(B, 13);
 
circ2 = circle(C, 15);
 
 
A = intersectionpoints(circ1, circ2)[0];
 
I = incenter(A, B, C);
 
 
Oa = (65*A + 64*I)/129;
 
Ob = (65*B + 64*I)/129;
 
Oc = (65*C + 64*I)/129;
 
 
Od = circumcenter(Oa, Ob, Oc);
 
O = circumcenter(A, B, C);
 
 
draw(circle(Oa, r));
 
draw(circle(Ob, r));
 
draw(circle(Oc, r));
 
draw(circle(Od, r));
 
 
draw(incircle(Oa, Ob, Oc)^^incircle(A, B, C)^^I--foot(I, A, C), green);
 
draw(A--B--C--cycle);
 
draw(Oa--Ob--Oc--cycle, blue);
 
draw(A--I--B^^I--C, blue);
 
draw(Oa--foot(Oa, A, C)^^Oc--foot(Oc, A, C), blue);
 
draw(rightanglemark(Oa, foot(Oa, A, C), C)^^rightanglemark(Oc, foot(Oc, A, C), A));
 
dot(I);
 
dot(Oa);
 
dot(Ob);
 
dot(Oc);
 
dot(Od);
 
dot(O, red);
 
 
label("<math>A</math>", A, N);
 
label("<math>B</math>", B, S);
 
label("<math>C</math>", C, S);
 
label("<math>I</math>", I, S);
 
label("<math>O_A</math>", Oa, NW);
 
label("<math>O_B</math>", Ob, SW);
 
label("<math>O_C</math>", Oc, SE);
 
label("<math>O_\omega</math>", Od, N);
 
label("<math>O</math>", O, SE, red);
 
 
[/asy]
 
  
 
== See also ==
 
== See also ==

Revision as of 18:45, 26 December 2020

Problem

Four circles $\omega,$ $\omega_{A},$ $\omega_{B},$ and $\omega_{C}$ with the same radius are drawn in the interior of triangle $ABC$ such that $\omega_{A}$ is tangent to sides $AB$ and $AC$, $\omega_{B}$ to $BC$ and $BA$, $\omega_{C}$ to $CA$ and $CB$, and $\omega$ is externally tangent to $\omega_{A},$ $\omega_{B},$ and $\omega_{C}$. If the sides of triangle $ABC$ are $13,$ $14,$ and $15,$ the radius of $\omega$ can be represented in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Solution

2007 AIME II-15.png

Solution 1

First, apply Heron's formula to find that $[ABC] = \sqrt{21 \cdot 8 \cdot 7 \cdot 6} = 84$. The semiperimeter is $21$, so the inradius is $\frac{A}{s} = \frac{84}{21} = 4$.

Now consider the incenter $I$ of $\triangle ABC$. Let the radius of one of the small circles be $r$. Let the centers of the three little circles tangent to the sides of $\triangle ABC$ be $O_A$, $O_B$, and $O_C$. Let the center of the circle tangent to those three circles be $O$. The homothety $\mathcal{H}\left(I, \frac{4-r}{4}\right)$ maps $\triangle ABC$ to $\triangle XYZ$; since $OO_A = OO_B = OO_C = 2r$, $O$ is the circumcenter of $\triangle XYZ$ and $\mathcal{H}$ therefore maps the circumcenter of $\triangle ABC$ to $O$. Thus, $2r = R \cdot \frac{4 - r}{4}$, where $R$ is the circumradius of $\triangle ABC$. Substituting $R = \frac{abc}{4[ABC]} = \frac{65}{8}$, $r = \frac{260}{129}$ and the answer is $\boxed{389}$.

Solution 2

2007 AIME II-15b.gif

Consider a 13-14-15 triangle. $A=84.$ [By Heron's Formula or by 5-12-13 and 9-12-15 right triangles.]

The inradius is $r=\frac{A}{s}=\frac{84}{21}=4$, where $s$ is the semiperimeter. Scale the triangle with the inradius by a linear scale factor, $u.$

The circumradius is $R=\frac{abc}{4rs}=\frac{13\cdot 14\cdot 15}{4\cdot 4\cdot 21}=\frac{65}{8},$ where $a,$ $b,$ and $c$ are the side-lengths. Scale the triangle with the circumradius by a linear scale factor, $v$.

Cut and combine the triangles, as shown. Then solve for $4u$:

$\frac{65}{8}v=8u$
$v=\frac{64}{65}u$
$u+v=1$
$u+\frac{64}{65}u=1$
$\frac{129}{65}u=1$
$4u=\frac{260}{129}$

The solution is $260+129=\boxed{389}$.

See also

2007 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png