Difference between revisions of "2012 AMC 10A Problems/Problem 17"
Aaravdodhia (talk | contribs) (→Solution 3) |
Aaravdodhia (talk | contribs) (→Solution 3) |
||
Line 35: | Line 35: | ||
So <math>a-b=\boxed{\textbf{(C)}\ 3}</math> | So <math>a-b=\boxed{\textbf{(C)}\ 3}</math> | ||
− | Note: | + | '''Note:''' |
− | From <math>9ab=70(a-b)^2</math>, the Euclidean Algorithm gives <math>\gcd(a-b,a)=\gcd(a-b,b)=1</math>. Thus <math>(a-b)^2</math> is relatively prime to <math>ab</math>, and clearly <math>9</math> and <math>70</math> are coprime as well. The solution must therefore be <math>(a-b)^2=9 \ | + | From <math>9ab=70(a-b)^2</math>, the Euclidean Algorithm gives <math>\gcd(a-b,a)=\gcd(a-b,b)=1</math>. Thus <math>(a-b)^2</math> is relatively prime to <math>ab</math>, and clearly <math>9</math> and <math>70</math> are coprime as well. The solution must therefore be <math>(a-b)^2=9 \rightarrow a-b=\boxed{\textbf{(C)}\ 3}</math> and <math>ab=70</math>. |
== Solution 4 == | == Solution 4 == |
Revision as of 11:53, 24 December 2020
Problem
Let and be relatively prime positive integers with and What is
Solution 1
Since and are relatively prime, and are both integers as well. Then, for the given fraction to simplify to , the denominator must be a multiple of Thus, is a multiple of . Looking at the answer choices, the only multiple of is .
Solution 2
Using difference of cubes in the numerator and cancelling out one in the numerator and denominator gives .
Set , and . Then . Cross multiplying gives , and simplifying gives . Since and are relatively prime, we let and , giving and . Since , the only solution is , which can be seen upon squaring and summing the various factor pairs of .
Thus, .
Remarks:
An alternate method of solving the system of equations involves solving the second equation for , by plugging it into the first equation, and solving the resulting quartic equation with a substitution of . The four solutions correspond to
Also, we can solve for directly instead of solving for and :
Note that if you double and double , you will get different (but not relatively prime) values for and that satisfy the original equation.
Solution 3
The first step is the same as above which gives .
Then we can subtract and then add to get , which gives . . Cross multiply . Since , take the square root. . Since and are integers and relatively prime, is an integer. is a multiple of , so is a multiple of . Therefore and is a solution. So
Note:
From , the Euclidean Algorithm gives . Thus is relatively prime to , and clearly and are coprime as well. The solution must therefore be and .
Solution 4
Slightly expanding, we have that .
Canceling the , cross multiplying, and simplifying, we obtain that
. Dividing everything by , we get that
.
Applying the quadratic formula....and following the restriction that ....
.
Hence, .
Since they are relatively prime, , .
.
Solution 5
Note that the denominator, when simplified, gets We now have to test the answer choices. If one has a good eye or by simply testing the answer choices the answer will be clearly ~mathboy282
See Also
2012 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.