Difference between revisions of "2020 AMC 10A Problems/Problem 9"

Line 24: Line 24:
 
~IceMatrix
 
~IceMatrix
  
 +
==Video Solution 3==
 
https://youtu.be/w2_H96-yzk8
 
https://youtu.be/w2_H96-yzk8
  

Revision as of 13:48, 22 December 2020

Problem

A single bench section at a school event can hold either $7$ adults or $11$ children. When $N$ bench sections are connected end to end, an equal number of adults and children seated together will occupy all the bench space. What is the least possible positive integer value of $N?$

$\textbf{(A) } 9 \qquad \textbf{(B) } 18 \qquad \textbf{(C) } 27 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 77$

Solution 1

The least common multiple of $7$ and $11$ is $77$. Therefore, there must be $77$ adults and $77$ children. The total number of benches is $\frac{77}{7}+\frac{77}{11}=11+7=\boxed{\text{(B) }18}$.


Solution 2

This is similar to Solution 1, with the same basic idea, but we don't need to calculate the LCM. Since both $7$ and $11$ are relatively prime, their LCM must be their product. So the answer would be $7 + 11 = \boxed{\text{(B) } 18}$. ~Baolan

Video Solution 1

Education, The Study of Everything

https://youtu.be/GKTQO99CKPM

Video Solution 2

https://youtu.be/JEjib74EmiY

~IceMatrix

Video Solution 3

https://youtu.be/w2_H96-yzk8

~savannahsolver

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png