Difference between revisions of "2004 AMC 10A Problems/Problem 20"
Mathandski (talk | contribs) (Rearranged solutions to match the order they were added in as much as possible) |
Mathboy282 (talk | contribs) (→Problem) |
||
Line 2: | Line 2: | ||
Points <math>E</math> and <math>F</math> are located on square <math>ABCD</math> so that <math>\triangle BEF</math> is equilateral. What is the ratio of the area of <math>\triangle DEF</math> to that of <math>\triangle ABE</math>? | Points <math>E</math> and <math>F</math> are located on square <math>ABCD</math> so that <math>\triangle BEF</math> is equilateral. What is the ratio of the area of <math>\triangle DEF</math> to that of <math>\triangle ABE</math>? | ||
− | <center> | + | <center> |
+ | <asy> | ||
+ | unitsize(3 cm); | ||
+ | |||
+ | pair A, B, C, D, E, F; | ||
+ | |||
+ | A = (0,0); | ||
+ | B = (1,0); | ||
+ | C = (1,1); | ||
+ | D = (0,1); | ||
+ | E = (0,Tan(15)); | ||
+ | F = (1 - Tan(15),1); | ||
+ | |||
+ | draw(A--B--C--D--cycle); | ||
+ | draw(B--E--F--cycle); | ||
+ | |||
+ | label("$A$", A, SW); | ||
+ | label("$B$", B, SE); | ||
+ | label("$C$", C, NE); | ||
+ | label("$D$", D, NW); | ||
+ | label("$E$", E, W); | ||
+ | label("$F$", F, N); | ||
+ | </asy> | ||
+ | </center> | ||
<math> \mathrm{(A) \ } \frac{4}{3} \qquad \mathrm{(B) \ } \frac{3}{2} \qquad \mathrm{(C) \ } \sqrt{3} \qquad \mathrm{(D) \ } 2 \qquad \mathrm{(E) \ } 1+\sqrt{3} </math> | <math> \mathrm{(A) \ } \frac{4}{3} \qquad \mathrm{(B) \ } \frac{3}{2} \qquad \mathrm{(C) \ } \sqrt{3} \qquad \mathrm{(D) \ } 2 \qquad \mathrm{(E) \ } 1+\sqrt{3} </math> |
Revision as of 20:00, 5 December 2020
Contents
Problem
Points and are located on square so that is equilateral. What is the ratio of the area of to that of ?
Solution 1
Since triangle is equilateral, , and and are congruent. Thus, triangle is an isosceles right triangle. So we let . Thus . If we go angle chasing, we find out that , thus . . Thus , or . Thus , and , and . Thus the ratio of the areas is
Solution 2 (Non-trig)
WLOG, let the side length of be 1. Let . It suffices that . Then triangles and are congruent by HL, so and . We find that , and so, by the Pythagorean Theorem, we have This yields , so . Thus, the desired ratio of areas is
Solution 3
is equilateral, so , and so they must each be . Then let , which gives and . The area of is then . is an isosceles right triangle with hypotenuse 1, so and therefore its area is . The ratio of areas is then
Solution 4(system of equations)
Assume AB=1 then FC is x ED is then we see that using HL FCB is congruent is EAB. Using Pythagoras of triangles FCB and FDE we get . Expanding we get . Simplifying gives solving using completing the square(or other methods) gives 2 answers and because then then using the areas we get the answer to be D
Solution 5
First, since is equilateral and is a square, by the Hypothenuse Leg Theorem, is congruent to . Then, assume length and length , then . is equilateral, so and , it is given that is a square and and are right triangles. Then we use the Pythagorean theorem to prove that and since we know that and , which means . Now we plug in the variables and the equation becomes , expand and simplify and you get . We want the ratio of area of to . Expressed in our variables, the ratio of the area is and we know , so the ratio must be 2. Choice D