Difference between revisions of "2007 AIME II Problems/Problem 14"
Lopkiloinm (talk | contribs) (→Solution) |
(→Solution 2) |
||
Line 19: | Line 19: | ||
Comment: | Comment: | ||
The answer is clearly correct, but the proof has a gap, i.e. there is no reason that <math>f(-2)\neq1</math>. Since <math>f(x)</math> has no real roots, the degree must be even. Consider <math>g(x)= f(x)/f(-x)</math>. Then since <math>f</math> is non-zero, <math>g(x)=g(2x^3+x)</math>. Now the function <math>2x^3+x</math> applied repeatedly from some real starting value of x becomes arbitrarily large, and the limit of <math>g(x)</math> as <math>|x|</math> approaches infinity is 1, so <math>g(x)</math>=1 for all x, or <math>f(x)=f(-x)</math>. Then <math>f(x)=h(x^2+1)</math> for some polynomial <math>h(x)</math>, and <math>h(x^2+1)h(4x^4+1)=h(4x^6+4x^4+x^2+1) = h((x^2+1)(4x^4+1))</math>. Now suppose h has degree m. It is clearly monic. Assume that the next highest non-zero coefficient in h is k. Then, subtracting <math>((x^2+1)(4x^4+1))^m</math> from both sides of the equation yields a polynomial equality with degree <math>4m+2k</math> on the left and degree <math>6k</math> on the right, a contradiction. So <math>h(x)=x^m</math>, and <math>f(x)=(1+x^2)^m</math>. | The answer is clearly correct, but the proof has a gap, i.e. there is no reason that <math>f(-2)\neq1</math>. Since <math>f(x)</math> has no real roots, the degree must be even. Consider <math>g(x)= f(x)/f(-x)</math>. Then since <math>f</math> is non-zero, <math>g(x)=g(2x^3+x)</math>. Now the function <math>2x^3+x</math> applied repeatedly from some real starting value of x becomes arbitrarily large, and the limit of <math>g(x)</math> as <math>|x|</math> approaches infinity is 1, so <math>g(x)</math>=1 for all x, or <math>f(x)=f(-x)</math>. Then <math>f(x)=h(x^2+1)</math> for some polynomial <math>h(x)</math>, and <math>h(x^2+1)h(4x^4+1)=h(4x^6+4x^4+x^2+1) = h((x^2+1)(4x^4+1))</math>. Now suppose h has degree m. It is clearly monic. Assume that the next highest non-zero coefficient in h is k. Then, subtracting <math>((x^2+1)(4x^4+1))^m</math> from both sides of the equation yields a polynomial equality with degree <math>4m+2k</math> on the left and degree <math>6k</math> on the right, a contradiction. So <math>h(x)=x^m</math>, and <math>f(x)=(1+x^2)^m</math>. | ||
− | |||
− | |||
− | |||
== See also == | == See also == |
Revision as of 00:55, 26 November 2020
Problem
Let be a polynomial with real coefficients such that
and for all
,
Find
Solution
Let be a root of
. Then we have
; since
is a root, we have
; therefore
is also a root. Thus, if
is real and non-zero,
, so
has infinitely many roots. Since
is a polynomial (thus of finite degree) and
is nonzero,
has no real roots.
Note that is not constant. We then find two complex roots:
. We find that
, and that
. This means that
. Thus,
are roots of the polynomial, and so
will be a factor of the polynomial. (Note: This requires the assumption that
. Clearly,
, because that would imply the existence of a real root.)
The polynomial is thus in the form of . Substituting into the given expression, we have
Thus either is 0 for any
, or
satisfies the same constraints as
. Continuing, by infinite descent,
for some
.
Since for some
, we have
; so
.
Comment:
The answer is clearly correct, but the proof has a gap, i.e. there is no reason that . Since
has no real roots, the degree must be even. Consider
. Then since
is non-zero,
. Now the function
applied repeatedly from some real starting value of x becomes arbitrarily large, and the limit of
as
approaches infinity is 1, so
=1 for all x, or
. Then
for some polynomial
, and
. Now suppose h has degree m. It is clearly monic. Assume that the next highest non-zero coefficient in h is k. Then, subtracting
from both sides of the equation yields a polynomial equality with degree
on the left and degree
on the right, a contradiction. So
, and
.
See also
2007 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.