Difference between revisions of "1992 AIME Problems/Problem 8"

m
m (Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
For any sequence of real numbers <math>A=(a_1,a_2,a_3,\ldots)</math>, define <math>\Delta A</math> to be the sequence <math>(a_2-a_1,a_3-a_2,a_4-a_3,\ldots)</math>, whose <math>n^\mbox{th}_{}</math> term is <math>a_{n+1}-a_n^{}</math>. Suppose that all of the terms of thet sequence <math>\Delta(\Delta A^{}_{})</math> are <math>1^{}_{}</math>, and that <math>a_{19}=a_{92}^{}=0</math>. Find <math>a_1^{}</math>.
+
For any sequence of real numbers <math>A=(a_1,a_2,a_3,\ldots)</math>, define <math>\Delta A^{}_{}</math> to be the sequence <math>(a_2-a_1,a_3-a_2,a_4-a_3,\ldots)</math>, whose <math>n^\mbox{th}_{}</math> term is <math>a_{n+1}-a_n^{}</math>. Suppose that all of the terms of thet sequence <math>\Delta(\Delta A^{}_{})</math> are <math>1^{}_{}</math>, and that <math>a_{19}=a_{92}^{}=0</math>. Find <math>a_1^{}</math>.
  
 
== Solution ==
 
== Solution ==

Revision as of 21:50, 10 March 2007

Problem

For any sequence of real numbers $A=(a_1,a_2,a_3,\ldots)$, define $\Delta A^{}_{}$ to be the sequence $(a_2-a_1,a_3-a_2,a_4-a_3,\ldots)$, whose $n^\mbox{th}_{}$ (Error compiling LaTeX. Unknown error_msg) term is $a_{n+1}-a_n^{}$. Suppose that all of the terms of thet sequence $\Delta(\Delta A^{}_{})$ are $1^{}_{}$, and that $a_{19}=a_{92}^{}=0$. Find $a_1^{}$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also