Difference between revisions of "2013 AMC 10A Problems/Problem 8"
Sugar rush (talk | contribs) |
Sugar rush (talk | contribs) |
||
Line 14: | Line 14: | ||
Let <math>x=2^{2012}</math> | Let <math>x=2^{2012}</math> | ||
− | Then the given expression is equal to <math>\frac{4x+x}{4x-x}=\frac{5x}{3x}=\boxed{\textbf{(C)}\frac{5}{3}}</math> | + | Then the given expression is equal to <math>\frac{4x+x}{4x-x}=\frac{5x}{3x}=\boxed{\textbf{(C) }\frac{5}{3}}</math> |
+ | |||
+ | ==Video Solution== | ||
+ | https://www.youtube.com/watch?v=2vf843cvVzo?t=545 | ||
+ | |||
+ | ~sugar_rush | ||
==See Also== | ==See Also== |
Revision as of 22:22, 23 November 2020
Problem
What is the value of
Solution
Factoring out, we get: .
Cancelling out the from the numerator and denominator, we see that it simplifies to .
Solution 2
Let
Then the given expression is equal to
Video Solution
https://www.youtube.com/watch?v=2vf843cvVzo?t=545
~sugar_rush
See Also
2013 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2013 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 3 |
Followed by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.