Difference between revisions of "2002 AMC 12A Problems/Problem 23"
m (→Problem) |
(→Problem) |
||
Line 1: | Line 1: | ||
− | ==Problem== | + | ==Problem== blahhhhhhhh |
In triangle <math>ABC</math>, side <math>AC</math> and the [[perpendicular bisector]] of <math>BC</math> meet in point <math>D</math>, and <math>BD</math> bisects <math>\angle ABC</math>. If <math>AD=9</math> and <math>DC=7</math>, what is the area of triangle ABD? | In triangle <math>ABC</math>, side <math>AC</math> and the [[perpendicular bisector]] of <math>BC</math> meet in point <math>D</math>, and <math>BD</math> bisects <math>\angle ABC</math>. If <math>AD=9</math> and <math>DC=7</math>, what is the area of triangle ABD? | ||
Revision as of 14:22, 22 November 2020
==Problem== blahhhhhhhh In triangle , side and the perpendicular bisector of meet in point , and bisects . If and , what is the area of triangle ABD?
Solution
Solution 1 Looking at the triangle , we see that its perpendicular bisector reaches the vertex, therefore implying it is isosceles. Let , so that from given and the previous deducted. Then because any exterior angle of a triangle has a measure that is the sum of the two interior angles that are not adjacent to the exterior angle. That means and are similar, so .
Then by using Heron's Formula on (with sides ), we have .
Solution 2
Let M be the point of the perpendicular bisector on BC. By the perpendicular bisector theorem, and . Also, by the angle bisector theorem, . Thus, let and . In addition, .
Thus, . Additionally, using the Law of Cosines and the fact that ,
Substituting and simplifying, we get
Thus, . We now know all sides of . Using Heron's Formula on ,
Solution 3
Note that because the perpendicular bisector and angle bisector meet at side and as triangle is isosceles, so . By the angle bisector theorem, we can express and as and respectively. We try to find through Stewart's Theorem. So
We plug this to find that the sides of are . By Heron's formula, the area is . ~skyscraper
See Also
2002 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.