Difference between revisions of "FidgetBoss 4000's 2019 AMC 12B Problems/Problem 1"

Line 8: Line 8:
  
 
==See also==
 
==See also==
{{AMC12 box|year=2019|ab=B|before=First problem|after=[[FidgetBoss 4000's Mock AMC 12B Problems/Problem 2]]}}
+
{{AMC12 box|year=2019|ab=B|before=First problem|after=[[FidgetBoss 4000's Mock AMC 12B Problems/Problem 2|Problem 2]]}}
 +
 
 +
[[Category:Introductory Algebra Problems]]
 
{{FidgetBoss Notice}}
 
{{FidgetBoss Notice}}

Revision as of 13:53, 19 November 2020

Problem

If $x$ and $y$ are positive integers such that their product is $64,$ what is the sum of all distinct values for $xy+x+y?$

$\textbf{(A) }391\qquad\textbf{(B) }392\qquad\textbf{(C) }393\qquad\textbf{(D) }394\qquad\textbf{(E) }395\qquad$

Solution 1

Use Simon's Favorite Factoring Trick to deduce $xy+x+y=(x+1)(y+1)-1$. We know $x$ and $y$ are positive integers and $xy=64$. So, we have the following possibilities for the pair $(x, y): (1, 64), (2, 32), (4, 16), (8, 8)$. Note that we do not have to account for flipping $x$ and $y$ because the question asks for only the $\emph{distinct}$ values for $xy+x+y$. If $(x, y)=(1, 64)$, then $(x+1)(y+1)-1=2\cdot 65-1=129$. If $(x, y)=(2, 32)$, then $3\cdot 33-1=98$. If $(x, y)=(4, 16)$, then $5\cdot 17-1=84$. If $(x, y)=(8, 8)$, then $9\cdot 9-1=80$. The sum of these distinct values is $129+98+84+80=227+164=\boxed{391}\textbf{(A)}$.

See also

2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
First problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by FidgetBoss 4000's Mock American Mathematics Competitions. AMC logo.png