Difference between revisions of "2003 AIME I Problems/Problem 4"
m (→Solution) |
I_like_pie (talk | contribs) |
||
Line 12: | Line 12: | ||
<math> \log_{10} (\sin x + \cos x) = \frac{1}{2}(\log_{10} n - \log_{10} 10) </math> | <math> \log_{10} (\sin x + \cos x) = \frac{1}{2}(\log_{10} n - \log_{10} 10) </math> | ||
− | <math> \log_{10} (\sin x + \cos x) = \frac{1}{2} | + | <math> \log_{10} (\sin x + \cos x) = \frac{1}{2}(\log_{10} \frac{n}{10}) </math> |
− | <math> \log_{10} (\sin x + \cos x) = | + | <math> \log_{10} (\sin x + \cos x) = (\log_{10} \sqrt{\frac{n}{10}}) </math> |
<math> \sin x + \cos x = \sqrt{\frac{n}{10}} </math> | <math> \sin x + \cos x = \sqrt{\frac{n}{10}} </math> | ||
− | <math> (\sin x + \cos x)^{2} = | + | <math> (\sin x + \cos x)^{2} = (\sqrt{\frac{n}{10}})^2 </math> |
<math> \sin^2 x + \cos^2 x +2 \sin x \cos x= \frac{n}{10} </math> | <math> \sin^2 x + \cos^2 x +2 \sin x \cos x= \frac{n}{10} </math> | ||
− | <math> 1 + 2 | + | <math> 1 + 2(\frac{1}{10}) = \frac{n}{10} </math> |
<math> \frac{12}{10} = \frac{n}{10} </math> | <math> \frac{12}{10} = \frac{n}{10} </math> | ||
− | <math> n = | + | <math> n = 012 </math> |
== See also == | == See also == |
Revision as of 01:24, 8 March 2007
Problem
Given that and that find
Solution