Difference between revisions of "2001 IMO Shortlist Problems/A4"
Brut3Forc3 (talk | contribs) |
Notverysmart (talk | contribs) |
||
Line 14: | Line 14: | ||
Conversely, let <math>G</math> be a subgroup of the multiplicative group <math>\mathbb R^*</math>. Take <math>f(x) = \left\{\begin{array}{c}f(1)x,\ x\in G \\ | Conversely, let <math>G</math> be a subgroup of the multiplicative group <math>\mathbb R^*</math>. Take <math>f(x) = \left\{\begin{array}{c}f(1)x,\ x\in G \\ | ||
− | 0,\ x\not \in G\end{array}</math>. It's easy to check the condition <math>f(xy)[f(x) - f(y)] = (x - y)f(x)f(y)</math>. | + | 0,\ x\not \in G\end{array}\right\}</math>. It's easy to check the condition <math>f(xy)[f(x) - f(y)] = (x - y)f(x)f(y)</math>. |
== Resources == | == Resources == |
Latest revision as of 11:39, 1 November 2020
Problem
Find all functions , satisfying
for all .
Solution
Assume . Take . We get , so . This is a solution, so we can take it out of the way: assume .
. We either have or , so for every , . In particular, .
Assume . We get . This means that ( is defined because ). Assume now that and . We get , and after replacing everything we get , so . Assume now . From we get , and after applying again to we get . We can now see that combine to .
Let . and simply say that is a subgroup of .
Conversely, let be a subgroup of the multiplicative group . Take . It's easy to check the condition .