Difference between revisions of "1991 AIME Problems/Problem 13"

 
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
A drawer contains a mixture of red socks and blue socks, at most 1991 in all. It so happens that, when two socks are selected randomly without replacement, there is a probability of exactly <math>\displaystyle \frac{1}{2}</math> that both are red or both are blue. What is the largest possible number of red socks in the drawer that is consistent with this data?
  
 
== Solution ==
 
== Solution ==
 +
{{solution}}
  
 
== See also ==
 
== See also ==
* [[1991 AIME Problems]]
+
{{AIME box|year=1991|num-b=12|num-a=14}}

Revision as of 01:39, 2 March 2007

Problem

A drawer contains a mixture of red socks and blue socks, at most 1991 in all. It so happens that, when two socks are selected randomly without replacement, there is a probability of exactly $\displaystyle \frac{1}{2}$ that both are red or both are blue. What is the largest possible number of red socks in the drawer that is consistent with this data?

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

1991 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions