Difference between revisions of "1991 AIME Problems/Problem 10"

 
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
Two three-letter strings, <math>aaa^{}_{}</math> and <math>bbb^{}_{}</math>, are transmitted electronically. Each string is sent letter by letter. Due to faulty equipment, each of the six letters has a 1/3 chance of being received incorrectly, as an <math>a^{}_{}</math> when it should have been a <math>b^{}_{}</math>, or as a <math>b^{}_{}</math> when it should be an <math>a^{}_{}</math>. However, whether a given letter is received correctly or incorrectly is independent of the reception of any other letter. Let <math>S_a^{}</math> be the three-letter string received when <math>aaa^{}_{}</math> is transmitted and let <math>S_b^{}</math> be the three-letter string received when <math>bbb^{}_{}</math> is transmitted. Let <math>\displaystyle p</math> be the probability that <math>S_a^{}</math> comes before <math>S_b^{}</math> in alphabetical order. When <math>\displaystyle p</math> is written as a fraction in lowest terms, what is its numerator?
  
 
== Solution ==
 
== Solution ==
 +
{{solution}}
  
 
== See also ==
 
== See also ==
* [[1991 AIME Problems]]
+
{{AIME box|year=1991|num-b=9|num-a=11}}

Revision as of 01:28, 2 March 2007

Problem

Two three-letter strings, $aaa^{}_{}$ and $bbb^{}_{}$, are transmitted electronically. Each string is sent letter by letter. Due to faulty equipment, each of the six letters has a 1/3 chance of being received incorrectly, as an $a^{}_{}$ when it should have been a $b^{}_{}$, or as a $b^{}_{}$ when it should be an $a^{}_{}$. However, whether a given letter is received correctly or incorrectly is independent of the reception of any other letter. Let $S_a^{}$ be the three-letter string received when $aaa^{}_{}$ is transmitted and let $S_b^{}$ be the three-letter string received when $bbb^{}_{}$ is transmitted. Let $\displaystyle p$ be the probability that $S_a^{}$ comes before $S_b^{}$ in alphabetical order. When $\displaystyle p$ is written as a fraction in lowest terms, what is its numerator?

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

1991 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions