Difference between revisions of "2019 AMC 10A Problems/Problem 1"

m (minor edit)
Line 1: Line 1:
==Problem 1==
+
== Problem ==
 
What is the value of <cmath>2^{\left(0^{\left(1^9\right)}\right)}+\left(\left(2^0\right)^1\right)^9?</cmath>
 
What is the value of <cmath>2^{\left(0^{\left(1^9\right)}\right)}+\left(\left(2^0\right)^1\right)^9?</cmath>
 +
 
<math>\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4</math>
 
<math>\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4</math>
  
 
== Solution ==  
 
== Solution ==  
 
 
<math>2^{\left(0^{\left(1^9\right)}\right)}+\left(\left(2^0\right)^1\right)^9</math>
 
<math>2^{\left(0^{\left(1^9\right)}\right)}+\left(\left(2^0\right)^1\right)^9</math>
  
 
<math>=  1+1 = \boxed{2}</math> which corresponds to <math>\boxed{\text{C}}</math>.
 
<math>=  1+1 = \boxed{2}</math> which corresponds to <math>\boxed{\text{C}}</math>.
  
==Video Solution==
+
== Video Solution ==
 
https://youtu.be/Ad8WKcwZcTA
 
https://youtu.be/Ad8WKcwZcTA
  
Line 15: Line 15:
  
 
== See Also ==
 
== See Also ==
 
 
{{AMC10 box|year=2019|ab=A|before=First Problem|num-a=2}}
 
{{AMC10 box|year=2019|ab=A|before=First Problem|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 00:45, 19 October 2020

Problem

What is the value of \[2^{\left(0^{\left(1^9\right)}\right)}+\left(\left(2^0\right)^1\right)^9?\]

$\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4$

Solution

$2^{\left(0^{\left(1^9\right)}\right)}+\left(\left(2^0\right)^1\right)^9$

$=  1+1 = \boxed{2}$ which corresponds to $\boxed{\text{C}}$.

Video Solution

https://youtu.be/Ad8WKcwZcTA

~savannahsolver

See Also

2019 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png