Difference between revisions of "1990 AIME Problems/Problem 3"
m |
|||
Line 1: | Line 1: | ||
− | |||
== Problem == | == Problem == | ||
+ | Let <math>P_1^{}</math> be a regular <math>n~\mbox{gon}</math> and <math>P_2^{}</math> be a regular <math>s~\mbox{gon}</math> <math>(r\geq s\geq 3)</math> such that each interior angle of <math>P_1^{}</math> is <math>\frac{59}{58}</math> as large as each interior angle of <math>P_2^{}</math>. What's the largest possible value of <math>s_{}^{}</math>? | ||
== Solution == | == Solution == | ||
{{solution}} | {{solution}} | ||
+ | |||
== See also == | == See also == | ||
− | + | {{AIME box|year=1990|num-b=2|num-a=4}} |
Revision as of 00:20, 2 March 2007
Problem
Let be a regular and be a regular such that each interior angle of is as large as each interior angle of . What's the largest possible value of ?
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
1990 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |