Difference between revisions of "2013 AMC 8 Problems/Problem 17"
Starfish2020 (talk | contribs) (→See Also) |
Starfish2020 (talk | contribs) (→Solution 4) |
||
Line 16: | Line 16: | ||
==Solution 4== | ==Solution 4== | ||
+ | Since there are <math>6</math> numbers, we divide <math>2013</math> by <math>6</math> to find the mean of the numbers. <math>\frac{2013}{6} = 335 \frac{1}{2}</math>. | ||
+ | Then, <math>335 \frac{1}{2} + \frac{1}{2} = 336</math> (the fourth number). Fifth: <math>337</math>; Sixth: <math>\boxed {338}</math>. | ||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2013|num-b=16|num-a=18}} | {{AMC8 box|year=2013|num-b=16|num-a=18}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 10:27, 26 September 2020
Problem
The sum of six consecutive positive integers is 2013. What is the largest of these six integers?
Solution 1
The mean of these numbers is . Therefore the numbers are , so the answer is
Solution 2
Let the number be . Then our desired number is .
Our integers are , so we have that .
Solution 3
Let the first term be . Our integers are . We have,
Solution 4
Since there are numbers, we divide by to find the mean of the numbers. . Then, (the fourth number). Fifth: ; Sixth: .
See Also
2013 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.