Difference between revisions of "2000 AIME I Problems/Problem 14"
Maxninga938 (talk | contribs) (→Solution 3) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | In triangle <math>ABC,</math> it is given that angles <math>B</math> and <math>C</math> are [[congruent (geometry)|congruent]]. Points <math>P</math> and <math>Q</math> lie on <math>\overline{AC}</math> and <math>\overline{AB},</math> respectively, so that <math>AP = PQ = QB = BC.</math> Angle <math>ACB</math> is <math>r</math> times as large as angle <math>APQ,</math> where <math>r</math> is a positive real number. Find | + | In triangle <math>ABC,</math> it is given that angles <math>B</math> and <math>C</math> are [[congruent (geometry)|congruent]]. Points <math>P</math> and <math>Q</math> lie on <math>\overline{AC}</math> and <math>\overline{AB},</math> respectively, so that <math>AP = PQ = QB = BC.</math> Angle <math>ACB</math> is <math>r</math> times as large as angle <math>APQ,</math> where <math>r</math> is a positive real number. Find <math>\lfloor 1000r \rfloor</math>. |
__TOC__ | __TOC__ |
Revision as of 20:05, 14 September 2020
Problem
In triangle it is given that angles and are congruent. Points and lie on and respectively, so that Angle is times as large as angle where is a positive real number. Find .
Solution
Solution 1
Let point be in such that . Then is a rhombus, so and is an isosceles trapezoid. Since bisects , it follows by symmetry in trapezoid that bisects . Thus lies on the perpendicular bisector of , and . Hence is an equilateral triangle.
Now , and the sum of the angles in is . Then and , so the answer is .
Solution 2
Again, construct as above.
Let and , which means . is isosceles with , so . Let be the intersection of and . Since , is cyclic, which means . Since is an isosceles trapezoid, , but since bisects , .
Therefore we have that . We solve the simultaneous equations and to get and . , , so . .
Solution 3
Let the measure of be and . Because is isosceles, . So, . is isosceles too, so . Simplifying, . By double angle formula, we know that . Applying, and . The expression in the parentheses though is triple angle formula! Hence, , . It follows now that , . Giving . .
See also
2000 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.