Difference between revisions of "2014 AMC 10B Problems/Problem 2"

Line 17: Line 17:
 
{{AMC10 box|year=2014|ab=B|num-b=1|num-a=3}}
 
{{AMC10 box|year=2014|ab=B|num-b=1|num-a=3}}
 
{{MAA Notice}}
 
{{MAA Notice}}
We can factor the numerator and the denominator. The numerator becomes 2^3(1+1) and the denominator becomes 2^-3(1+1). The (1+1)'s cancel so we are left with 2^3 over 2^-3. This leaves us with 2^6 which equals to E) 64
 

Revision as of 10:28, 12 September 2020

Problem

What is $\frac{2^3 + 2^3}{2^{-3} + 2^{-3}}$?

$\textbf {(A) } 16 \qquad \textbf {(B) } 24 \qquad \textbf {(C) } 32 \qquad \textbf {(D) } 48 \qquad \textbf {(E) } 64$

Solution

We can synchronously multiply ${2^3}$ to the polynomials both above and below the fraction bar. Thus, \[\frac{2^3+2^3}{2^{-3}+2^{-3}}\\=\frac{2^6+2^6}{1+1}\\={2^6}.\] Hence, the fraction equals to $\boxed{{64 (\textbf{E})}}$.

Video Solution

https://youtu.be/vLFULrT_7yk

~savannahsolver

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png