Difference between revisions of "1984 AIME Problems/Problem 9"
Mathommill (talk | contribs) (→Solution 2 (Rigorous)) |
m (→Solution 2 (Rigorous)) |
||
Line 68: | Line 68: | ||
== Solution 2 (Rigorous)== | == Solution 2 (Rigorous)== | ||
− | It is clear that <math>DX=8</math> and <math>CX=10</math> where <math>X</math> is the foot of the perpendicular from <math>D</math> and <math>C</math> to side <math>AB</math>. Thus <math>[DXC]=\frac{ab\sin{c}}{2}=20=5 | + | It is clear that <math>DX=8</math> and <math>CX=10</math> where <math>X</math> is the foot of the perpendicular from <math>D</math> and <math>C</math> to side <math>AB</math>. Thus <math>[DXC]=\frac{ab\sin{c}}{2}=20=5 \cdot h \rightarrow h = 4</math> where h is the height of the tetrahedron from <math>D</math>. Hence, the volume of the tetrahedron is <math>\frac{bh}{3}=15\cdot \frac{4}{3}=\boxed{020}</math> |
~ Mathommill | ~ Mathommill | ||
Revision as of 13:30, 4 September 2020
Problem
In tetrahedron , edge has length 3 cm. The area of face is and the area of face is . These two faces meet each other at a angle. Find the volume of the tetrahedron in .
Solution 1
Position face on the bottom. Since , we find that . Because the problem does not specify, we may assume both and to be isosceles triangles. Thus, the height of forms a with the height of the tetrahedron. So, . The volume of the tetrahedron is thus .
Solution 2 (Rigorous)
It is clear that and where is the foot of the perpendicular from and to side . Thus where h is the height of the tetrahedron from . Hence, the volume of the tetrahedron is ~ Mathommill
Solution 3 (Sketchy)
Make faces and right triangles. This makes everything a lot easier. Then do everything in solution 1.
See also
1984 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |