Difference between revisions of "2020 AMC 10A Problems/Problem 3"

(Solution 3)
(Solution 3)
Line 15: Line 15:
 
It is known that <math>\frac{x-y}{y-x}=-1</math> for <math>x\ne y</math>. We use this fact to cancel out the terms.
 
It is known that <math>\frac{x-y}{y-x}=-1</math> for <math>x\ne y</math>. We use this fact to cancel out the terms.
  
<math>\frac{\cancel{(a-3)} -1 \cancel{(b-4)} -1 \cancel{(c-5)} -1}{\cancel{(5-c)}\cancel{(3-a)}\cancel{(4-b)}}=(-1)(-1)(-1)=\boxed{\textbf{(A)}~-1}</math>  
+
<math>\frac{\cancel{(a-3)} -1 \cancel{(b-4)} -1 \cancel{(c-5)} -1}{\cancel{(5-c)}\cancel{(3-a)}\cancel{(4-b)}}=(-1)(-1)(-1)=\boxed{\textbf{(A)}-1}</math>  
  
 
~CoolJupiter
 
~CoolJupiter

Revision as of 08:08, 1 September 2020

Problem

Assuming $a\neq3$, $b\neq4$, and $c\neq5$, what is the value in simplest form of the following expression? \[\frac{a-3}{5-c} \cdot \frac{b-4}{3-a} \cdot \frac{c-5}{4-b}\] $\textbf{(A) } -1 \qquad \textbf{(B) } 1 \qquad \textbf{(C) } \frac{abc}{60} \qquad \textbf{(D) } \frac{1}{abc} - \frac{1}{60} \qquad \textbf{(E) } \frac{1}{60} - \frac{1}{abc}$

Solution

Note that $a-3$ is $-1$ times $3-a$. Likewise, $b-4$ is $-1$ times $4-b$ and $c-5$ is $-1$ times $5-c$. Therefore, the product of the given fraction equals $(-1)(-1)(-1)=\boxed{\textbf{(A)}-1}$.

Solution 2

Substituting values for \[a, b,\text{and} c\], we see that if each of them satify the inequalities above, the value goes to be \[-1\]. Therefore, the product of the given fraction equals $(-1)(-1)(-1)=\boxed{\textbf{(A)}-1}$.

Solution 3

It is known that $\frac{x-y}{y-x}=-1$ for $x\ne y$. We use this fact to cancel out the terms.

$\frac{\cancel{(a-3)} -1 \cancel{(b-4)} -1 \cancel{(c-5)} -1}{\cancel{(5-c)}\cancel{(3-a)}\cancel{(4-b)}}=(-1)(-1)(-1)=\boxed{\textbf{(A)}-1}$

~CoolJupiter

Video Solution

https://youtu.be/WUcbVNy2uv0

~IceMatrix

https://www.youtube.com/watch?v=7-3sl1pSojc

~bobthefam

https://youtu.be/ZccL6yKrTiU

~savannahsolver

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png