Difference between revisions of "2006 AMC 10A Problems/Problem 23"

m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
[[Circle]]s with centers A and B have [[radius |radii]] 3 and 8, respectively. A common internal tangent intersects the circles at C and D, respectively. Lines AB and CD intersect at E, and AE=5. What is CD?
+
[[Circle]]s with centers A and B have [[radius |radii]] 3 and 8, respectively. A common [[internal tangent]] intersects the circles at C and D, respectively. Lines AB and CD intersect at E, and AE=5. What is CD?
  
 
<math>\mathrm{(A) \ } 13\qquad\mathrm{(B) \ } \frac{44}{3}\qquad\mathrm{(C) \ } \sqrt{221}\qquad\mathrm{(D) \ } \sqrt{255}\qquad\mathrm{(E) \ } \frac{55}{3}\qquad</math>  
 
<math>\mathrm{(A) \ } 13\qquad\mathrm{(B) \ } \frac{44}{3}\qquad\mathrm{(C) \ } \sqrt{221}\qquad\mathrm{(D) \ } \sqrt{255}\qquad\mathrm{(E) \ } \frac{55}{3}\qquad</math>  
 
== Solution ==
 
== Solution ==
{{solution}}
+
<math>\angle AEC</math> and <math>\angle BED</math> ([[vertical angles]]) are [[congruent]], as are [[right angle]]s <math>\angle ACE</math> and <math>\angle BDE</math> (since radii intersect tangents at right angles). Thus, <math>\triangle ACE \sim \triangle BDE</math>.
== See Also ==
 
*[[2006 AMC 10A Problems]]
 
  
*[[2006 AMC 10A Problems/Problem 22|Previous Problem]]
+
By the [[Pythagorean Theorem]], [[line segment]] <math>CE = 4</math>. The sides are [[proportion]]al, so <math>\frac{CE}{AC} = \frac{DE}{BD} \Rightarrow \frac{4}{3} = \frac{DE}{8}</math>. This makes <math>DE = \frac{32}{3}</math> and <math>CD = CE + DE = 4 + \frac{32}{3} = \frac{44}{3} \Longrightarrow \mathrm{B}</math>.
  
*[[2006 AMC 10A Problems/Problem 24|Next Problem]]
+
== See also ==
 +
*[[2006 AMC 12A Problems/Problem 16]]
 +
{{AMC10 box|year=2006|ab=A|num-b=22|num-a=24}}
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]

Revision as of 21:50, 16 February 2007

Problem

Circles with centers A and B have radii 3 and 8, respectively. A common internal tangent intersects the circles at C and D, respectively. Lines AB and CD intersect at E, and AE=5. What is CD?

$\mathrm{(A) \ } 13\qquad\mathrm{(B) \ } \frac{44}{3}\qquad\mathrm{(C) \ } \sqrt{221}\qquad\mathrm{(D) \ } \sqrt{255}\qquad\mathrm{(E) \ } \frac{55}{3}\qquad$

Solution

$\angle AEC$ and $\angle BED$ (vertical angles) are congruent, as are right angles $\angle ACE$ and $\angle BDE$ (since radii intersect tangents at right angles). Thus, $\triangle ACE \sim \triangle BDE$.

By the Pythagorean Theorem, line segment $CE = 4$. The sides are proportional, so $\frac{CE}{AC} = \frac{DE}{BD} \Rightarrow \frac{4}{3} = \frac{DE}{8}$. This makes $DE = \frac{32}{3}$ and $CD = CE + DE = 4 + \frac{32}{3} = \frac{44}{3} \Longrightarrow \mathrm{B}$.

See also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions