Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 12"
m |
m (defined O) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | In [[quadrilateral]] <math>\displaystyle ABCD,</math> <math>\displaystyle m \angle DAC= m\angle DBC </math> and <math>\displaystyle \frac{[ADB]}{[ABC]}=\frac12.</math> If <math>\displaystyle AD=4,</math> <math>\displaystyle BC=6</math>, <math>\displaystyle BO=1,</math> and the [[area]] of <math>\displaystyle ABCD</math> is <math>\displaystyle \frac{a\sqrt{b}}{c},</math> where <math>\displaystyle a,b,c</math> are [[relatively prime]] [[positive integer]]s, find <math>\displaystyle a+b+c.</math> | + | In [[quadrilateral]] <math>\displaystyle ABCD,</math> <math>\displaystyle m \angle DAC= m\angle DBC </math> and <math>\displaystyle \frac{[ADB]}{[ABC]}=\frac12.</math> <math>O</math> is defined to be the intersection of the diagonals of <math>ABCD</math>. If <math>\displaystyle AD=4,</math> <math>\displaystyle BC=6</math>, <math>\displaystyle BO=1,</math> and the [[area]] of <math>\displaystyle ABCD</math> is <math>\displaystyle \frac{a\sqrt{b}}{c},</math> where <math>\displaystyle a,b,c</math> are [[relatively prime]] [[positive integer]]s, find <math>\displaystyle a+b+c.</math> |
Revision as of 21:09, 16 February 2007
Problem
In quadrilateral and is defined to be the intersection of the diagonals of . If , and the area of is where are relatively prime positive integers, find
Note*: and refer to the areas of triangles and
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
Problem Source
AoPS users 4everwise and Altheman collaborated to create this problem.