Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 12"

m
m (defined O)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
In [[quadrilateral]] <math>\displaystyle ABCD,</math> <math>\displaystyle m \angle DAC= m\angle DBC </math> and <math>\displaystyle \frac{[ADB]}{[ABC]}=\frac12.</math> If <math>\displaystyle AD=4,</math> <math>\displaystyle BC=6</math>, <math>\displaystyle BO=1,</math> and the [[area]] of <math>\displaystyle ABCD</math> is <math>\displaystyle \frac{a\sqrt{b}}{c},</math> where <math>\displaystyle a,b,c</math> are [[relatively prime]] [[positive integer]]s, find <math>\displaystyle a+b+c.</math>
+
In [[quadrilateral]] <math>\displaystyle ABCD,</math> <math>\displaystyle m \angle DAC= m\angle DBC </math> and <math>\displaystyle \frac{[ADB]}{[ABC]}=\frac12.</math> <math>O</math> is defined to be the intersection of the diagonals of <math>ABCD</math>. If <math>\displaystyle AD=4,</math> <math>\displaystyle BC=6</math>, <math>\displaystyle BO=1,</math> and the [[area]] of <math>\displaystyle ABCD</math> is <math>\displaystyle \frac{a\sqrt{b}}{c},</math> where <math>\displaystyle a,b,c</math> are [[relatively prime]] [[positive integer]]s, find <math>\displaystyle a+b+c.</math>
  
  

Revision as of 21:09, 16 February 2007

Problem

In quadrilateral $\displaystyle ABCD,$ $\displaystyle m \angle DAC= m\angle DBC$ and $\displaystyle \frac{[ADB]}{[ABC]}=\frac12.$ $O$ is defined to be the intersection of the diagonals of $ABCD$. If $\displaystyle AD=4,$ $\displaystyle BC=6$, $\displaystyle BO=1,$ and the area of $\displaystyle ABCD$ is $\displaystyle \frac{a\sqrt{b}}{c},$ where $\displaystyle a,b,c$ are relatively prime positive integers, find $\displaystyle a+b+c.$


Note*: $\displaystyle[ABC]$ and $\displaystyle[ADB]$ refer to the areas of triangles $\displaystyle ABC$ and $\displaystyle ADB.$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.



Problem Source

AoPS users 4everwise and Altheman collaborated to create this problem.