Difference between revisions of "2008 AMC 8 Problems/Problem 23"
m (→Solution 1) |
|||
Line 20: | Line 20: | ||
<math> \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{2}{9}\qquad\textbf{(C)}\ \frac{5}{18}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{7}{20} </math> | <math> \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{2}{9}\qquad\textbf{(C)}\ \frac{5}{18}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{7}{20} </math> | ||
− | ==Solution | + | ==Solution== |
The area of <math>\triangle BFD</math> is the area of square <math>ABCE</math> subtracted by the the area of the three triangles around it. Arbitrarily assign the side length of the square to be <math>6</math>. | The area of <math>\triangle BFD</math> is the area of square <math>ABCE</math> subtracted by the the area of the three triangles around it. Arbitrarily assign the side length of the square to be <math>6</math>. | ||
Revision as of 15:30, 19 August 2020
Problem
In square , and . What is the ratio of the area of to the area of square ?
Solution
The area of is the area of square subtracted by the the area of the three triangles around it. Arbitrarily assign the side length of the square to be .
The ratio of the area of to the area of is
See Also
2008 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.