Difference between revisions of "2017 AMC 12B Problems/Problem 16"

m (Solution)
Line 23: Line 23:
  
 
Solution submitted by [[User:TrueshotBarrage|David Kim]]
 
Solution submitted by [[User:TrueshotBarrage|David Kim]]
 +
 +
==Video Solution==
 +
 +
https://artofproblemsolving.com/wiki/index.php/2017_AMC_12B_Problems/Problem_16
 +
 +
-MistyMathMusic
 +
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2017|ab=B|num-b=15|num-a=17}}
 
{{AMC12 box|year=2017|ab=B|num-b=15|num-a=17}}

Revision as of 22:17, 11 August 2020

Problem 16

The number $21!=51,090,942,171,709,440,000$ has over $60,000$ positive integer divisors. One of them is chosen at random. What is the probability that it is odd?

$\textbf{(A)}\ \frac{1}{21} \qquad \textbf{(B)}\ \frac{1}{19} \qquad \textbf{(C)}\ \frac{1}{18} \qquad \textbf{(D)}\ \frac{1}{2} \qquad \textbf{(E)}\ \frac{11}{21}$

Solution

If a factor of $21!$ is odd, that means it contains no factors of $2$. We can find the number of factors of two in $21!$ by counting the number multiples of $2$, $4$, $8$, and $16$ that are less than or equal to $21$ (Legendre's Formula). After some quick counting we find that this number is $10+5+2+1 = 18$. If the prime factorization of $21!$ has $18$ factors of $2$, there are $19$ choices for each divisor for how many factors of $2$ should be included ($0$ to $18$ inclusive). The probability that a randomly chosen factor is odd is the same as if the number of factors of $2$ is $0$ which is $\boxed{\textbf{(B)}\frac{1}{19}}$.

Solution by: vedadehhc

Solution 2

We can write $21!$ as its prime factorization: \[21!=2^{18}\times3^9\times5^4\times7^3\times11\times13\times17\times19\]

Each exponent of these prime numbers are one less than the number of factors at play here. This makes sense; $2^{18}$ is going to have $19$ factors: $2^0, 2^1, 2^2,...\text{ }2^{18}$, and the other exponents will behave identically.

In other words, $21!$ has $(18+1)(9+1)(4+1)(3+1)(1+1)(1+1)(1+1)(1+1)$ factors.

We are looking for the probability that a randomly chosen factor of $21!$ will be odd--numbers that do not contain multiples of $2$ as factors.

From our earlier observation, the only factors of $21!$ that are even are ones with at least one multiplier of $2$, so our probability of finding an odd factor becomes the following: \[P(\text{odd})=\dfrac{\text{number of odd factors}}{\text{number of all factors}}=\dfrac{(9+1)(4+1)(3+1)(1+1)(1+1)(1+1)(1+1)}{(18+1)(9+1)(4+1)(3+1)(1+1)(1+1)(1+1)(1+1)}=\dfrac{1}{(18+1)}=\boxed{\dfrac{1}{19}}\]

Solution submitted by David Kim

Video Solution

https://artofproblemsolving.com/wiki/index.php/2017_AMC_12B_Problems/Problem_16

-MistyMathMusic

See Also

2017 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png