Difference between revisions of "1967 AHSME Problems/Problem 14"

(Problem 14)
(Solution)
Line 10: Line 10:
  
 
== Solution ==
 
== Solution ==
Let <math>x^2 = a</math> and <math>y^2 = b.</math>  
+
Since we know that <math>y=f(x)</math>, we can solve for <math>y</math> in terms of <math>x</math>. This gives us
  
then
+
<cmath>y=\frac{1}{1-x}\RightArrow y(1-x)=1 \RightArrow y-yx=1\RightArrow yx=y-1\RightArrow x=\frac{y-1}{y}</cmath>
 
 
        <math>a+4b=1</math>
 
 
 
and
 
 
 
        <math>4a+b=4</math>
 
 
 
By solving we find--
 
 
 
<math>a=1</math>
 
 
 
<math>b=0</math>
 
 
 
However <cmath>a=x^2</cmath>
 
and <cmath>b=y^2</cmath>
 
 
 
Therefore
 
<math>y=0</math>, and <math>x=1,-1</math>
 
 
 
Thus, the only solutions are <math>(0,1)</math>, and <math>(0,-1)</math>
 
 
 
 
 
So there are only 2 solutions
 
 
 
 
 
<math>\rightarrow</math> <math>\fbox{C}</math>
 
  
 
== See also ==
 
== See also ==

Revision as of 13:09, 10 August 2020

Problem

Let $f(t)=\frac{t}{1-t}$, $t \not= 1$. If $y=f(x)$, then $x$ can be expressed as

$\textbf{(A)}\ f\left(\frac{1}{y}\right)\qquad \textbf{(B)}\ -f(y)\qquad \textbf{(C)}\ -f(-y)\qquad \textbf{(D)}\ f(-y)\qquad \textbf{(E)}\ f(y)$

Solution

Since we know that $y=f(x)$, we can solve for $y$ in terms of $x$. This gives us

\[y=\frac{1}{1-x}\RightArrow y(1-x)=1 \RightArrow y-yx=1\RightArrow yx=y-1\RightArrow x=\frac{y-1}{y}\] (Error compiling LaTeX. Unknown error_msg)

See also

1967 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png