Difference between revisions of "1956 AHSME Problems/Problem 49"
m |
m |
||
Line 5: | Line 5: | ||
Also, <math>\angle BAT = 180^\circ - \angle BAP</math>, and <math>\angle ABR = 180^\circ - \angle ABP</math>. Hence, | Also, <math>\angle BAT = 180^\circ - \angle BAP</math>, and <math>\angle ABR = 180^\circ - \angle ABP</math>. Hence, | ||
− | <math>\angle AOB | + | <math>\angle AOB 180^\circ - \angle BAO - \angle ABO |
180^\circ - \frac{\angle BAT}{2} - \frac{\angle ABR}{2} | 180^\circ - \frac{\angle BAT}{2} - \frac{\angle ABR}{2} | ||
180^\circ - \frac{180^\circ - \angle BAP}{2} - \frac{180^\circ - \angle ABP}{2} | 180^\circ - \frac{180^\circ - \angle BAP}{2} - \frac{180^\circ - \angle ABP}{2} |
Revision as of 11:38, 1 August 2020
Solution 1
First, from triangle , . Note that bisects (to see this, draw radii from to and creating two congruent right triangles), so . Similarly, .
Also, , and . Hence,
Finally, from triangle , , so