Difference between revisions of "2019 AIME I Problems/Problem 15"
(Undo revision 124778 by Armwarrior25 (talk)) (Tag: Undo) |
|||
Line 1: | Line 1: | ||
==Problem 15== | ==Problem 15== | ||
− | Let <math>\overline{AB}</math> be a chord of a circle <math>\omega</math>, and let <math>P</math> be a point on the chord <math>\overline{AB}</math>. Circle <math>\omega_1</math> passes through <math>A</math> and <math>P</math> and is internally tangent to <math>\omega</math>. Circle <math>\omega_2</math> passes through <math>B</math> and <math>P</math> and is internally tangent to <math>\omega</math>. Circles <math>\omega_1</math> and <math>\omega_2</math> intersect at points <math>P</math> and <math>Q</math>. Line <math>PQ</math> intersects <math>\omega</math> at <math>X</math> and <math>Y</math>. Assume that <math>AP=5</math>, <math>PB=3</math>, <math>XY=11</math>, and <math>PQ | + | Let <math>\overline{AB}</math> be a chord of a circle <math>\omega</math>, and let <math>P</math> be a point on the chord <math>\overline{AB}</math>. Circle <math>\omega_1</math> passes through <math>A</math> and <math>P</math> and is internally tangent to <math>\omega</math>. Circle <math>\omega_2</math> passes through <math>B</math> and <math>P</math> and is internally tangent to <math>\omega</math>. Circles <math>\omega_1</math> and <math>\omega_2</math> intersect at points <math>P</math> and <math>Q</math>. Line <math>PQ</math> intersects <math>\omega</math> at <math>X</math> and <math>Y</math>. Assume that <math>AP=5</math>, <math>PB=3</math>, <math>XY=11</math>, and <math>PQ = sqrt(\tfrac{m}{n})</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. |
==Solution 1== | ==Solution 1== |
Revision as of 13:28, 30 July 2020
Problem 15
Let be a chord of a circle , and let be a point on the chord . Circle passes through and and is internally tangent to . Circle passes through and and is internally tangent to . Circles and intersect at points and . Line intersects at and . Assume that , , , and , where and are relatively prime positive integers. Find .
Solution 1
Let and be the centers of and , respectively. There is a homothety at sending to that sends to and to , so . Similarly, , so is a parallelogram. Moreover, whence is cyclic. However, so is an isosceles trapezoid. Since , , so is the midpoint of .
By Power of a Point, . Since and , and the requested sum is .
(Solution by TheUltimate123)
Solution 2
Let the tangents to at and intersect at . Then, since , lies on the radical axis of and , which is . It follows that Let denote the midpoint of . By the Midpoint of Harmonic Bundles Lemma, whence . Like above, . Since , we establish that , from which , and the requested sum is .
(Solution by TheUltimate123)
Solution 3
Firstly we need to notice that is the middle point of . Assume the center of circle are , respectively. Then are collinear and are collinear. Link . Notice that, . As a result, and . So we have parallelogram . So Notice that, and divide into two equal length pieces, So we have . As a result, lie on one circle. So . Notice that , we have . As a result, . So is the middle point of .
Back to our problem. Assume , and . Then we have , that is, . Also, . Solve these above, we have . As a result, we have . So, we have . As a result, our answer is .
Solution By BladeRunnerAUG (Fanyuchen20020715).
Solution 4
Note that the tangents to the circles at and intersect at a point on by radical center. Then, since and , we have so is cyclic. But if is the center of , clearly is cyclic with diameter , so is the midpoint of . Then, by Power of a Point, and it is given that . Thus so and the answer is .
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.