Difference between revisions of "1976 AHSME Problems/Problem 1"
(→Problem 1) |
(→Problem 1) |
||
Line 4: | Line 4: | ||
<math>\textbf{(A) }-2\qquad \textbf{(B) }-1\qquad \textbf{(C) }1/2\qquad \textbf{(D) }2\qquad \textbf{(E) }3</math> | <math>\textbf{(A) }-2\qquad \textbf{(B) }-1\qquad \textbf{(C) }1/2\qquad \textbf{(D) }2\qquad \textbf{(E) }3</math> | ||
+ | |||
+ | == Solution == | ||
+ | |||
+ | The reciprocal of <math>(1-x)</math> is <math>\frac{1}{1-x}</math>, so our equation is <cmath>1-\frac{1}{1-x}=\frac{1}{1-x},</cmath> which is equivalent to <math>\frac{1}{1-x}=\frac{1}{2}</math>. So, <math>1-x=2</math> and <math>x=-2\Rightarrow \boxed{A}</math>. |
Revision as of 20:47, 11 July 2020
Problem 1
If one minus the reciprocal of equals the reciprocal of , then equals
Solution
The reciprocal of is , so our equation is which is equivalent to . So, and .