Difference between revisions of "2006 AMC 12A Problems/Problem 17"

(added category)
(solution, box)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
 
{{image}}
 
{{image}}
  
Line 8: Line 7:
  
 
== Solution ==
 
== Solution ==
 +
One possibility is to use the [[coordinate plane]], setting B at the origin. Point A will be (<math>s</math>, 0) and E will be (<math>(s + \frac{r}{\sqrt{2}}, s + \frac{r}{\sqrt{2}})</math>) since B, D, and E are [[collinear]] and contains the diagonal of ABCD. The [[Pythagorean theorem]] results in
 +
 +
<math>AF^2 + EF^2 = AE^2</math>
 +
 +
<math>r^2  + (\sqrt{9 + 5\sqrt{2}})^2  = ((s + \frac{r}{\sqrt{2}}) - 0)^2 + ((s + \frac{r}{\sqrt{2}}) - s)^2</math>
 +
 +
<math>r^2  + 9 + 5\sqrt{2} = s^2 + rs\sqrt{2} + \frac{r^2}{2} + \frac{r^2}{2}</math>
 +
 +
<math>9 + 5\sqrt{2} = s^2 + rs\sqrt{2}</math>
 +
 +
This implies that <math>rs = 5</math> and <math>s^2 = 9</math>; dividing gives us <math>\frac{r}{s} = \frac{5}{9} \Rightarrow B</math>
 +
<!--Todo: geometric proof without coordinate plane-->
  
 
== See also ==
 
== See also ==
 
* [[2006 AMC 12A Problems]]
 
* [[2006 AMC 12A Problems]]
*[[2006 AMC 12A Problems/Problem 16|Previous Problem]]
+
 
*[[2006 AMC 12A Problems/Problem 18|Next Problem]]
+
{{AMC box|year=2006|n=12A|num-b=16|num-a=18}}
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]

Revision as of 19:47, 31 January 2007

Problem


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


Square $ABCD$ has side length $s$, a circle centered at $E$ has radius $r$, and $r$ and $s$ are both rational. The circle passes through $D$, and $D$ lies on $\overline{BE}$. Point $F$ lies on the circle, on the same side of $\overline{BE}$ as $A$. Segment $AF$ is tangent to the circle, and $AF=\sqrt{9+5\sqrt{2}}$. What is $r/s$?

$\mathrm{(A) \ } \frac{1}{2}\qquad \mathrm{(B) \ } \frac{5}{9}\qquad \mathrm{(C) \ } \frac{3}{5}\qquad \mathrm{(D) \ } \frac{5}{3}\qquad \mathrm{(E) \ }  \frac{9}{5}$

Solution

One possibility is to use the coordinate plane, setting B at the origin. Point A will be ($s$, 0) and E will be ($(s + \frac{r}{\sqrt{2}}, s + \frac{r}{\sqrt{2}})$) since B, D, and E are collinear and contains the diagonal of ABCD. The Pythagorean theorem results in

$AF^2 + EF^2 = AE^2$

$r^2  + (\sqrt{9 + 5\sqrt{2}})^2  = ((s + \frac{r}{\sqrt{2}}) - 0)^2 + ((s + \frac{r}{\sqrt{2}}) - s)^2$

$r^2  + 9 + 5\sqrt{2} = s^2 + rs\sqrt{2} + \frac{r^2}{2} + \frac{r^2}{2}$

$9 + 5\sqrt{2} = s^2 + rs\sqrt{2}$

This implies that $rs = 5$ and $s^2 = 9$; dividing gives us $\frac{r}{s} = \frac{5}{9} \Rightarrow B$

See also


{{{header}}}
Preceded by
Problem 16
AMC 12A
2006
Followed by
Problem 18