Difference between revisions of "2005 AIME I Problems/Problem 15"
m (→Solution 1) |
m (→Solution 1) |
||
Line 22: | Line 22: | ||
<cmath>9(10 - c)^2 + 200 = 100 + (30 - 2c)^2 \quad \Longrightarrow \quad c^2 - 12c + 20 = 0.</cmath> | <cmath>9(10 - c)^2 + 200 = 100 + (30 - 2c)^2 \quad \Longrightarrow \quad c^2 - 12c + 20 = 0.</cmath> | ||
− | Thus <math>c = 2</math> or <math> = 10</math>. We discard the value <math>c = 10</math> as extraneous (it gives us | + | Thus <math>c = 2</math> or <math> = 10</math>. We discard the value <math>c = 10</math> as extraneous (it gives us a line) and are left with <math>c = 2</math>, so our triangle has area <math>\sqrt{28 \cdot 18 \cdot 8 \cdot 2} = 24\sqrt{14}</math> and so the answer is <math>24 + 14 = \boxed{038}</math>. |
== Solution 2 == | == Solution 2 == |
Revision as of 19:20, 25 June 2020
Problem
Triangle has
The incircle of the triangle evenly trisects the median
If the area of the triangle is
where
and
are integers and
is not divisible by the square of a prime, find
Solution 1
![[asy] size(300); pointpen=black;pathpen=black+linewidth(0.65); pen s = fontsize(10); pair A=(0,0),B=(26,0),C=IP(circle(A,10),circle(B,20)),D=(B+C)/2,I=incenter(A,B,C); path cir = incircle(A,B,C); pair E1=IP(cir,B--C),F=IP(cir,A--C),G=IP(cir,A--B),P=IP(A--D,cir),Q=OP(A--D,cir); D(MP("A",A,s)--MP("B",B,s)--MP("C",C,N,s)--cycle); D(cir); D(A--MP("D",D,NE,s)); D(MP("E",E1,NE,s)); D(MP("F",F,NW,s)); D(MP("G",G,s)); D(MP("P",P,SW,s)); D(MP("Q",Q,SE,s)); MP("10",(B+D)/2,NE); MP("10",(C+D)/2,NE); [/asy]](http://latex.artofproblemsolving.com/e/b/b/ebb5c6eb90edb59c2c2fc2cf3dfef0dcf818f4f9.png)
Let ,
and
be the points of tangency of the incircle with
,
and
, respectively. Without loss of generality, let
, so that
is between
and
. Let the length of the median be
. Then by two applications of the Power of a Point Theorem,
, so
. Now,
and
are two tangents to a circle from the same point, so by the Two Tangent Theorem
and thus
. Then
so
and thus
.
Now, by Stewart's Theorem in triangle with cevian
, we have
Our earlier result from Power of a Point was that , so we combine these two results to solve for
and we get
Thus or
. We discard the value
as extraneous (it gives us a line) and are left with
, so our triangle has area
and so the answer is
.
Solution 2
Use Power of a point similar to the first solution to find that and that the side
, where
is one third of the median's length. Then use systems of law of cosines, creating two triangles, with
with angle
, and
with the same angle. Solving the system yields
. Solving using Heron's Formula gets the answer
, or
.
Solution 3
WLOG let E be be between C & D (as in solution 1). Assume . We use power of a point to get that
and
Since now we have ,
in triangle
and cevian
. Now, we can apply Stewart's Theorem.
or
if
, we get a degenerate triangle, so
, and thus AB = 26. You can now use Heron's Formula to finish. The answer is
, or
.
-Alexlikemath
See also
2005 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.