Difference between revisions of "2020 AIME II Problems/Problem 11"

(Solution 2)
(Solution 3)
Line 28: Line 28:
  
 
==Solution 3==
 
==Solution 3==
 +
 +
We know that <math>P(x)=x^2-3x-7</math>.
 +
 +
Since <math>Q(0)=2</math>, the constant term in <math>Q(x)</math> is <math>2</math>. Let <math>Q(x)=x^2+ax+2</math>.
 +
 +
Finally, let <math>R(x)=x^2+bx+c</math>.
 +
 +
<math>P(x)+Q(x)=2x^2+(a-3)x-5</math>. Let its roots be <math>p</math> and <math>q</math>.
 +
 +
<math>P(x)+R(x)=2x^2+(b-3)x+(c-7)</math> Let its roots be <math>p</math> and <math>r</math>.
 +
 +
<math>Q(x)+R(x)=2x^2+(a+b)x+(c+2)</math>. Let its roots be <math>q</math> and <math>r</math>.
 +
 +
By vietas, <math>p+q=\frac{3-a}{2}, p+r=\frac{3-b}{2}, q+r=\frac{-(a+b)}{2}</math>
 +
 +
We could work out the system of equations, but it's pretty easy to see that <math>p=\frac32, q=-\frac{a}{2}, r=-\frac{b}{2}</math>.
 +
\begin{align*}
 +
\text{Again, by vietas, }pq=-\frac52&\text{, } pr=\frac{c-7}{2}\text{, } qr=\frac{c+2}{2} \\
 +
\text{Multiplying everything together a}&\text{nd then taking the sqrt of both sides,} \\
 +
(pqr)^2&=\left(-\frac52\right)\left(\frac{c-7}{2}\right)\left(\frac{c+2}{2}\right)\\
 +
pqr&=\sqrt{\left(-\frac52\right)\left(\frac{c-7}{2}\right)\left(\frac{c+2}{2}\right)} \\
 +
\text{Now, we divide this }&\text{equation by }qr=\frac{c+2}{2} \\
 +
\frac{pqr}{qr}&=\frac{\sqrt{\left(-\frac52\right)\left(\frac{c-7}{2}\right)\left(\frac{c+2}{2}\right)}}{\frac{c+2}{2}} \\
 +
p &= \frac{\sqrt{\left(-\frac52\right)\left(\frac{c-7}{2}\right)}}{\sqrt{\frac{c+2}{2}}} \\
 +
\text{Recall th}\text{at }p=\frac32 &\text{ and square both sides}\\
 +
\frac94&=\frac{\left(-\frac52\right)\left(\frac{c-7}{2}\right)}{\frac{c+2}{2}} \\
 +
\text{Solving gives } c=\frac{52}{19}&, \text{ so our answer is }\boxed{071}
 +
\end{align*}
 +
 +
~quacker88
  
 
==Video Solution==
 
==Video Solution==

Revision as of 10:20, 9 June 2020

Problem

Let $P(x) = x^2 - 3x - 7$, and let $Q(x)$ and $R(x)$ be two quadratic polynomials also with the coefficient of $x^2$ equal to $1$. David computes each of the three sums $P + Q$, $P + R$, and $Q + R$ and is surprised to find that each pair of these sums has a common root, and these three common roots are distinct. If $Q(0) = 2$, then $R(0) = \frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Solution 1

Let $Q(x) = x^2 + ax + 2$ and $R(x) = x^2 + bx + c$. We can write the following: \[P + Q = 2x^2 + (a - 3)x - 5\] \[P + R = 2x^2 + (b - 3)x + (c - 7)\] \[Q + R = 2x^2 + (a + b)x + (c + 2)\] Let the common root of $P+Q,P+R$ be $r$; $P+R,Q+R$ be $s$; and $P+Q,Q+R$ be $t$. We then have that the roots of $P+Q$ are $r,t$, the roots of $P + R$ are $r, s$, and the roots of $Q + R$ are $s,t$.

By Vieta's, we have: \[r + t = \dfrac{3 - a}{2}\tag{1}\] \[r + s = \dfrac{3 - b}{2}\tag{2}\] \[s + t = \dfrac{-a - b}{2}\tag{3}\] \[rt = \dfrac{-5}{2}\tag{4}\] \[rs = \dfrac{c - 7}{2}\tag{5}\] \[st = \dfrac{c + 2}{2}\tag{6}\]

Subtracting $(3)$ from $(1)$, we get $r - s = \dfrac{3 + b}{2}$. Adding this to $(2)$, we get $2r = 3 \implies r = \dfrac{3}{2}$. This gives us that $t = \dfrac{-5}{3}$ from $(4)$. Substituting these values into $(5)$ and $(6)$, we get $s = \dfrac{c-7}{3}$ and $s = \dfrac{-3c - 6}{10}$. Equating these values, we get $\dfrac{c-7}{3} = \dfrac{-3c-6}{10} \implies c = \dfrac{52}{19} = R(0)$. Thus, our answer is $52 + 19 = \boxed{071}$. ~ TopNotchMath

Solution 2

Let $P+Q, Q+R$ have shared root $q$, $Q+R, R+P$ have shared root $r$, and the last pair having shared root $p$. We will now set $Q(x) = x^2+ax+2$, and $R(x) = x^2+bx+c$. We wish to find $c$, and now we compute $P+Q,Q+R,R+P$. \[P+Q = 2x^2+(a-3)x-5 = 2(x-p)(x-q)\] \[Q+R = 2x^2+(a+b)x+(2+c) = 2(x-q)(x-r)\] \[R+P = 2x^2+(b-3)x+(c-7) = 2(x-r)(x-p)\] From here, we equate coefficients. This means $p+q = \frac{3-a}{2}, p+r = \frac{3-b}{2}, q+r = \frac{-a-b}{2} \implies p = \frac{3}{2}$. Now, $pq = \frac{-5}{2} \implies q = -\frac{5}{3}$. Finally, we know that $pr = \frac{c-7}{2}, qr = \frac{c+2}{2} \implies c = \frac{52}{19} = R(0) \implies \boxed{071}.$

Solution 3

We know that $P(x)=x^2-3x-7$.

Since $Q(0)=2$, the constant term in $Q(x)$ is $2$. Let $Q(x)=x^2+ax+2$.

Finally, let $R(x)=x^2+bx+c$.

$P(x)+Q(x)=2x^2+(a-3)x-5$. Let its roots be $p$ and $q$.

$P(x)+R(x)=2x^2+(b-3)x+(c-7)$ Let its roots be $p$ and $r$.

$Q(x)+R(x)=2x^2+(a+b)x+(c+2)$. Let its roots be $q$ and $r$.

By vietas, $p+q=\frac{3-a}{2}, p+r=\frac{3-b}{2}, q+r=\frac{-(a+b)}{2}$

We could work out the system of equations, but it's pretty easy to see that $p=\frac32, q=-\frac{a}{2}, r=-\frac{b}{2}$. \begin{align*} \text{Again, by vietas, }pq=-\frac52&\text{, } pr=\frac{c-7}{2}\text{, } qr=\frac{c+2}{2} \\ \text{Multiplying everything together a}&\text{nd then taking the sqrt of both sides,} \\ (pqr)^2&=\left(-\frac52\right)\left(\frac{c-7}{2}\right)\left(\frac{c+2}{2}\right)\\ pqr&=\sqrt{\left(-\frac52\right)\left(\frac{c-7}{2}\right)\left(\frac{c+2}{2}\right)} \\ \text{Now, we divide this }&\text{equation by }qr=\frac{c+2}{2} \\ \frac{pqr}{qr}&=\frac{\sqrt{\left(-\frac52\right)\left(\frac{c-7}{2}\right)\left(\frac{c+2}{2}\right)}}{\frac{c+2}{2}} \\ p &= \frac{\sqrt{\left(-\frac52\right)\left(\frac{c-7}{2}\right)}}{\sqrt{\frac{c+2}{2}}} \\ \text{Recall th}\text{at }p=\frac32 &\text{ and square both sides}\\ \frac94&=\frac{\left(-\frac52\right)\left(\frac{c-7}{2}\right)}{\frac{c+2}{2}} \\ \text{Solving gives } c=\frac{52}{19}&, \text{ so our answer is }\boxed{071} \end{align*}

~quacker88

Video Solution

https://youtu.be/BQlab3vjjxw ~ CNCM

See Also

2020 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png