Difference between revisions of "2020 AIME II Problems/Problem 4"

m
(Problem Added)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
Triangles <math>\triangle ABC</math> and <math>\triangle A'B'C'</math> lie in the coordinate plane with vertices <math>A(0,0)</math>, <math>B(0,12)</math>, <math>C(16,0)</math>, <math>A'(24,18)</math>, <math>B'(36,18)</math>, <math>C'(24,2)</math>. A rotation of <math>m</math> degrees clockwise around the point <math>(x,y)</math> where <math>0<m<180</math>, will transform <math>\triangle ABC</math> to <math>\triangle A'B'C'</math>. Find <math>m+x+y</math>.
  
 
==Video Solution==
 
==Video Solution==

Revision as of 02:09, 8 June 2020

Problem

Triangles $\triangle ABC$ and $\triangle A'B'C'$ lie in the coordinate plane with vertices $A(0,0)$, $B(0,12)$, $C(16,0)$, $A'(24,18)$, $B'(36,18)$, $C'(24,2)$. A rotation of $m$ degrees clockwise around the point $(x,y)$ where $0<m<180$, will transform $\triangle ABC$ to $\triangle A'B'C'$. Find $m+x+y$.

Video Solution

https://youtu.be/atqPgGG0Ekk

~IceMatrix

See Also=

2020 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png