Difference between revisions of "2020 AIME II Problems/Problem 6"

m
Line 6: Line 6:
 
==Video Solution==
 
==Video Solution==
 
https://youtu.be/_JTWJxbDC1A ~ CNCM
 
https://youtu.be/_JTWJxbDC1A ~ CNCM
 +
 +
==Video Solution 2==
 +
https://youtu.be/__B3pJMpfSk
 +
 +
~IceMatrix
 
==See Also==
 
==See Also==
 
{{AIME box|year=2020|n=II|num-b=5|num-a=7}}
 
{{AIME box|year=2020|n=II|num-b=5|num-a=7}}
 
[[Category:Intermediate Algebra Problems]]
 
[[Category:Intermediate Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 01:33, 8 June 2020

Problem

Define a sequence recursively by $t_1 = 20$, $t_2 = 21$, and\[t_n = \frac{5t_{n-1}+1}{25t_{n-2}}\]for all $n \ge 3$. Then $t_{2020}$ can be written as $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.


Video Solution

https://youtu.be/_JTWJxbDC1A ~ CNCM

Video Solution 2

https://youtu.be/__B3pJMpfSk

~IceMatrix

See Also

2020 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png