Difference between revisions of "2013 AIME II Problems/Problem 10"
Pandabear10 (talk | contribs) m (→Solution 1) |
(→Solution 2) |
||
Line 40: | Line 40: | ||
==Solution 2== | ==Solution 2== | ||
+ | <asy> | ||
+ | import math; | ||
+ | import olympiad; | ||
+ | import graph; | ||
+ | pair A, B, K, L; | ||
+ | B = (sqrt(13), 0); A=(4+sqrt(13), 0); | ||
+ | dot(B); | ||
+ | dot(A); | ||
+ | |||
+ | draw(Circle((0,0), sqrt(13))); | ||
+ | label("$O$", (0,0), S);label("$B$", B, SW);label("$A$", A, S); | ||
+ | dot((0,0)); | ||
+ | |||
+ | |||
+ | |||
+ | </asy> | ||
+ | |||
Draw <math>OC</math> perpendicular to <math>KL</math> at <math>C</math>. Draw <math>BD</math> perpendicular to <math>KL</math> at <math>D</math>. | Draw <math>OC</math> perpendicular to <math>KL</math> at <math>C</math>. Draw <math>BD</math> perpendicular to <math>KL</math> at <math>D</math>. | ||
Revision as of 18:58, 4 June 2020
Contents
Problem 10
Given a circle of radius , let be a point at a distance from the center of the circle. Let be the point on the circle nearest to point . A line passing through the point intersects the circle at points and . The maximum possible area for can be written in the form , where , , , and are positive integers, and are relatively prime, and is not divisible by the square of any prime. Find .
Solution 1
Now we put the figure in the Cartesian plane, let the center of the circle , then , and
The equation for Circle O is , and let the slope of the line be , then the equation for line is .
Then we get . According to Vieta's Formulas, we get
, and
So,
Also, the distance between and is
So the area
Then the maximum value of is
So the answer is .
Solution 2
Draw perpendicular to at . Draw perpendicular to at .
Therefore, to maximize area of , we need to maximize area of .
So when area of is maximized, .
Eventually, we get
So the answer is .
See Also
http://girlsangle.wordpress.com/2013/11/26/2013-aime-2-problem-10/
2013 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.