Difference between revisions of "1995 AIME Problems/Problem 7"
m |
m |
||
Line 2: | Line 2: | ||
Given that <math>\displaystyle (1+\sin t)(1+\cos t)=5/4</math> and | Given that <math>\displaystyle (1+\sin t)(1+\cos t)=5/4</math> and | ||
<center><math>(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},</math></center> | <center><math>(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},</math></center> | ||
− | where <math>\displaystyle k, m,</math> and <math> | + | where <math>\displaystyle k, m,</math> and <math>\displaystyle n_{}</math> are positive integers with <math>\displaystyle m_{}</math> and <math>\displaystyle n_{}</math> relatively prime, find <math>\displaystyle k+m+n.</math> |
== Solution == | == Solution == |
Revision as of 00:15, 22 January 2007
Problem
Given that and
where and are positive integers with and relatively prime, find