Difference between revisions of "2020 AIME I Problems/Problem 1"
Ilovemath04 (talk | contribs) |
|||
Line 28: | Line 28: | ||
2. The base angles of an isoceles triangle are congruent. | 2. The base angles of an isoceles triangle are congruent. | ||
− | Now we angle chase. <math>\angle{ADE}=\angle{EAD}=x</math>, <math>\angle{AED} = 180-2x</math>, <math>\angle{BED}=\angle{EBD}=2x</math>, <math>\angle{EDB} = 180-4x</math>, <math>\angle{BDC} = \angle{BCD} = 3x</math>, <math>\angle{CBD} = 180-6x</math>. Since <math>AB = AC</math> as given by the problem, <math>\angle{ABC} = \angle{ACB}</math>, so <math>180-4x=3x</math>. Therefore, <math>x = 180/7^{\circ}</math>, and our desired angle is <cmath>180-4\left(\frac{180}{7}\right) = \frac{540}{7}</cmath> for an answer of <math>\boxed{ | + | Now we angle chase. <math>\angle{ADE}=\angle{EAD}=x</math>, <math>\angle{AED} = 180-2x</math>, <math>\angle{BED}=\angle{EBD}=2x</math>, <math>\angle{EDB} = 180-4x</math>, <math>\angle{BDC} = \angle{BCD} = 3x</math>, <math>\angle{CBD} = 180-6x</math>. Since <math>AB = AC</math> as given by the problem, <math>\angle{ABC} = \angle{ACB}</math>, so <math>180-4x=3x</math>. Therefore, <math>x = 180/7^{\circ}</math>, and our desired angle is <cmath>180-4\left(\frac{180}{7}\right) = \frac{540}{7}</cmath> for an answer of <math>\boxed{547}</math>. |
See here for a video solution: https://youtu.be/4e8Hk04Ax_E | See here for a video solution: https://youtu.be/4e8Hk04Ax_E | ||
Line 37: | Line 37: | ||
By Exterior Angle Theorem on triangle <math>ADB</math>, <math>\angle{BDC}=3x</math>. | By Exterior Angle Theorem on triangle <math>ADB</math>, <math>\angle{BDC}=3x</math>. | ||
This tells us <math>\angle{BCA}=\angle{ABC}=3x</math> and <math>3x+3x+x=180</math>. | This tells us <math>\angle{BCA}=\angle{ABC}=3x</math> and <math>3x+3x+x=180</math>. | ||
− | Thus <math>x=\frac{180}{7}</math> and we want <math>\angle{ABC}=3x=\frac{540}{7}</math> to get an answer of <math>\boxed{ | + | Thus <math>x=\frac{180}{7}</math> and we want <math>\angle{ABC}=3x=\frac{540}{7}</math> to get an answer of <math>\boxed{547}</math>. |
Revision as of 15:47, 27 May 2020
Contents
Problem
In with
point
lies strictly between
and
on side
and point
lies strictly between
and
on side
such that
The degree measure of
is
where
and
are relatively prime positive integers. Find
Solution 1
If we set to
, we can find all other angles through these two properties:
1. Angles in a triangle sum to
.
2. The base angles of an isoceles triangle are congruent.
Now we angle chase. ,
,
,
,
,
. Since
as given by the problem,
, so
. Therefore,
, and our desired angle is
for an answer of
.
See here for a video solution: https://youtu.be/4e8Hk04Ax_E
Solution 2
Let be
in degrees.
.
By Exterior Angle Theorem on triangle
,
.
By Exterior Angle Theorem on triangle
,
.
This tells us
and
.
Thus
and we want
to get an answer of
.
https://artofproblemsolving.com/wiki/index.php/1961_AHSME_Problems/Problem_25
(Almost Mirrored)
See here for a video solution:
See Also
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.