Difference between revisions of "Exradius"

(there were no latex, so I added, needs rechecking)
Line 1: Line 1:
 
Excircle
 
Excircle
The radius of an excircle. Let a triangle have exradius r_A (sometimes denoted  rho_A), opposite side of length a and angle A, area Delta, and semiperimeter s. Then
+
The radius of an excircle. Let a triangle have exradius <math>r_A</math> (sometimes denoted  <math>\rho_A</math>), opposite side of length <math>a</math> and angle <math>A</math>, area <math>\Delta</math>, and semiperimeter <math>s</math>. Then
  
r_1 = Delta/(s-a)
+
<math>r_1 = \frac{\Delta}{(s-a)}
 
(1)
 
(1)
= sqrt((s(s-b)(s-c))/(s-a))
+
= \sqrt{\frac{(s(s-b)(s-c))}{(s-a)}}
 
(2)
 
(2)
= 4Rsin(1/2A)cos(1/2B)cos(1/2C)
+
= 4R\sin{\frac{1}{2A}}\cos{\frac{1}{2B}}\cos{\frac{1}{2C}}
 
(3)
 
(3)
 +
</math>
 +
(Johnson 1929, p. 189), where <math>R</math> is the circumradius. Let <math>r</math> be the inradius, then
  
(Johnson 1929, p. 189), where R is the circumradius. Let r be the inradius, then
+
  <math>4R=r_1+r_2+r_3-r</math>
 
 
  4R=r_1+r_2+r_3-r
 
  
 
(4)
 
(4)
  
1/(r_1)+1/(r_2)+1/(r_3)=1/r
+
<math>\frac{1}{r_1}+\frac{1}{r_2}+\frac{1}{r_3}=1/r</math>
  
 
(5)
 
(5)
 
(Casey 1888, p. 65) and
 
(Casey 1888, p. 65) and
  
  rr_1r_2r_3=Delta^2.
+
  <math>rr_1r_2r_3=\Delta^2</math>
  
 
(6)
 
(6)
 
Some fascinating formulas due to Feuerbach are
 
Some fascinating formulas due to Feuerbach are
  
  r(r_2r_3+r_3r_1+r_1r_2)=sDelta=r_1r_2r_3  
+
  <math>r(r_2r_3+r_3r_1+r_1r_2)=s\Delta=r_1r_2r_3</math>
r(r_1+r_2+r_3)=bc+ca+ab-s^2  
+
<math>r(r_1+r_2+r_3)=bc+ca+ab-s^2 </math>
rr_1+rr_2+rr_3+r_1r_2+r_2r_3+r_3r_1=bc+ca+ab  
+
<math>rr_1+rr_2+rr_3+r_1r_2+r_2r_3+r_3r_1=bc+ca+ab</math>
r_2r_3+r_3r_1+r_1r_2-rr_1-rr_2-rr_3=1/2(a^2+b^2+c^2)
+
$r_2r_3+r_3r_1+r_1r_2-rr_1-rr_2-rr_3=\frac{1}{2(a^2+b^2+c^2)}

Revision as of 09:56, 21 May 2020

Excircle The radius of an excircle. Let a triangle have exradius $r_A$ (sometimes denoted $\rho_A$), opposite side of length $a$ and angle $A$, area $\Delta$, and semiperimeter $s$. Then

$r_1	=	\frac{\Delta}{(s-a)}	 (1) 	=	\sqrt{\frac{(s(s-b)(s-c))}{(s-a)}}	 (2) 	=	4R\sin{\frac{1}{2A}}\cos{\frac{1}{2B}}\cos{\frac{1}{2C}}	 (3)$ (Johnson 1929, p. 189), where $R$ is the circumradius. Let $r$ be the inradius, then

$4R=r_1+r_2+r_3-r$ 	

(4)

$\frac{1}{r_1}+\frac{1}{r_2}+\frac{1}{r_3}=1/r$

(5) (Casey 1888, p. 65) and

$rr_1r_2r_3=\Delta^2$ 	

(6) Some fascinating formulas due to Feuerbach are

$r(r_2r_3+r_3r_1+r_1r_2)=s\Delta=r_1r_2r_3$ 

$r(r_1+r_2+r_3)=bc+ca+ab-s^2$ $rr_1+rr_2+rr_3+r_1r_2+r_2r_3+r_3r_1=bc+ca+ab$ $r_2r_3+r_3r_1+r_1r_2-rr_1-rr_2-rr_3=\frac{1}{2(a^2+b^2+c^2)}