Difference between revisions of "2019 AMC 8 Problems/Problem 4"

(Solution 2 (meadsy69))
(Solution 2 (meadsy69))
Line 65: Line 65:
  
 
==Solution 2 (meadsy69)==
 
==Solution 2 (meadsy69)==
[asy]
+
<asy>
 
draw((-13,0)--(0,5));
 
draw((-13,0)--(0,5));
 
draw((0,5)--(13,0));
 
draw((0,5)--(13,0));
Line 79: Line 79:
 
label("C",(13,0),E);
 
label("C",(13,0),E);
 
label("D",(0,-5),S);
 
label("D",(0,-5),S);
[/asy]
+
</asy>
 
Since a rhombus has sides of equal length, <math>AB=BC=CD=DA=\frac{52}{4}=13</math>. In triangle ABC, <math>AB=BC=13</math> and <math>AC=24</math>. Using Heron's formula, we have <math>[ABCD]=[ABC]+[ACD]=2[ABC]=2\sqrt{25*12*12*1}</math>. Simplifying, we have <math>[ABC]=\sqrt{3600}=60</math> so <math>[ABCD]=2*60=\boxed{\textbf{(D)} 120}</math>. ~~RWhite
 
Since a rhombus has sides of equal length, <math>AB=BC=CD=DA=\frac{52}{4}=13</math>. In triangle ABC, <math>AB=BC=13</math> and <math>AC=24</math>. Using Heron's formula, we have <math>[ABCD]=[ABC]+[ACD]=2[ABC]=2\sqrt{25*12*12*1}</math>. Simplifying, we have <math>[ABC]=\sqrt{3600}=60</math> so <math>[ABCD]=2*60=\boxed{\textbf{(D)} 120}</math>. ~~RWhite
  

Revision as of 18:08, 30 April 2020

Problem 4

Quadrilateral $ABCD$ is a rhombus with perimeter $52$ meters. The length of diagonal $\overline{AC}$ is $24$ meters. What is the area in square meters of rhombus $ABCD$?

[asy] draw((-13,0)--(0,5)); draw((0,5)--(13,0)); draw((13,0)--(0,-5)); draw((0,-5)--(-13,0)); dot((-13,0)); dot((0,5)); dot((13,0)); dot((0,-5)); label("A",(-13,0),W); label("B",(0,5),N); label("C",(13,0),E); label("D",(0,-5),S); [/asy]

$\textbf{(A) }60\qquad\textbf{(B) }90\qquad\textbf{(C) }105\qquad\textbf{(D) }120\qquad\textbf{(E) }144$


Solution 1

[asy] draw((-12,0)--(0,5)); draw((0,5)--(12,0)); draw((12,0)--(0,-5)); draw((0,-5)--(-12,0)); draw((0,0)--(12,0)); draw((0,0)--(0,5)); draw((0,0)--(-12,0)); draw((0,0)--(0,-5)); dot((-12,0)); dot((0,5)); dot((12,0)); dot((0,-5)); label("A",(-12,0),W); label("B",(0,5),N); label("C",(12,0),E); label("D",(0,-5),S); label("E",(0,0),SW); [/asy]

A rhombus has sides of equal length. Because the perimeter of the rhombus is $52$, each side is $\frac{52}{4}=13$. In a rhombus, diagonals are perpendicular and bisect each other, which means $\overline{AE}$ = $12$ = $\overline{EC}$.

Consider one of the right triangles:

[asy] draw((-12,0)--(0,5)); draw((0,0)--(-12,0)); draw((0,0)--(0,5)); dot((-12,0)); dot((0,5)); label("A",(-12,0),W); label("B",(0,5),N); label("E",(0,0),SE); [/asy]

$\overline{AB}$ = $13$, and $\overline{AE}$ = $12$. Using Pythagorean theorem, we find that $\overline{BE}$ = $5$.

Thus the values of the two diagonals are $\overline{AC}$ = $24$ and $\overline{BD}$ = $10$. The area of a rhombus is = $\frac{d_1*d_2}{2}$ = $\frac{24*10}{2}$ = $120$

$\boxed{\textbf{(D)}\ 120}$ ~phoenixfire

Solution 2 (meadsy69)

[asy] draw((-13,0)--(0,5)); draw((0,5)--(13,0)); draw((13,0)--(0,-5)); draw((0,-5)--(-13,0)); draw((13,0)--(-13,0)); dot((-13,0)); dot((0,5)); dot((13,0)); dot((0,-5)); label("A",(-13,0),W); label("B",(0,5),N); label("C",(13,0),E); label("D",(0,-5),S); [/asy] Since a rhombus has sides of equal length, $AB=BC=CD=DA=\frac{52}{4}=13$. In triangle ABC, $AB=BC=13$ and $AC=24$. Using Heron's formula, we have $[ABCD]=[ABC]+[ACD]=2[ABC]=2\sqrt{25*12*12*1}$. Simplifying, we have $[ABC]=\sqrt{3600}=60$ so $[ABCD]=2*60=\boxed{\textbf{(D)} 120}$. ~~RWhite

See Also

2019 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png