Difference between revisions of "2010 AMC 8 Problems/Problem 17"
(Undo griefing) |
Hithere22702 (talk | contribs) |
||
Line 40: | Line 40: | ||
<math> \textbf{(A)}\ \frac{2}{5}\qquad\textbf{(B)}\ \frac{1}{2}\qquad\textbf{(C)}\ \frac{3}{5}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{3}{4} </math> | <math> \textbf{(A)}\ \frac{2}{5}\qquad\textbf{(B)}\ \frac{1}{2}\qquad\textbf{(C)}\ \frac{3}{5}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{3}{4} </math> | ||
− | ==Solution == | + | ==Solution 1== |
We see that half the area of the octagon is <math>5</math>. We see that the triangle area is <math>5-1 = 4</math>. That means that <math>\frac{5h}{2} = 4 \rightarrow h=\frac{8}{5}</math>. | We see that half the area of the octagon is <math>5</math>. We see that the triangle area is <math>5-1 = 4</math>. That means that <math>\frac{5h}{2} = 4 \rightarrow h=\frac{8}{5}</math>. | ||
<cmath>\text{QY}=\frac{8}{5} - 1 = \frac{3}{5}</cmath> | <cmath>\text{QY}=\frac{8}{5} - 1 = \frac{3}{5}</cmath> | ||
Meaning, <math>\frac{\frac{2}{5}}{\frac{3}{5}} = \boxed{\textbf{(D) }\frac{2}{3}}</math> | Meaning, <math>\frac{\frac{2}{5}}{\frac{3}{5}} = \boxed{\textbf{(D) }\frac{2}{3}}</math> | ||
+ | ==Solution 2(More rigorous)== | ||
+ | Like stated in solution 1, we know that half the area of the octagon is <math>5</math>. That means that the area of the trapezoid is <math>5+1=6</math>. <math>(XQ+2)/2/times5=6</math> Solving for <math>XQ</math>, we get <math>XQ=2/5</math>. Subtracting <math>2/5</math> from <math>1</math>, we get <math>QY=3/5</math>. Therefore, the answer comes out to <math>\boxed{\textbf{(D) }\frac{2}{3}}</math> | ||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2010|num-b=16|num-a=18}} | {{AMC8 box|year=2010|num-b=16|num-a=18}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 22:41, 28 April 2020
Problem
The diagram shows an octagon consisting of unit squares. The portion below is a unit square and a triangle with base . If bisects the area of the octagon, what is the ratio ?
Solution 1
We see that half the area of the octagon is . We see that the triangle area is . That means that . Meaning,
Solution 2(More rigorous)
Like stated in solution 1, we know that half the area of the octagon is . That means that the area of the trapezoid is . Solving for , we get . Subtracting from , we get . Therefore, the answer comes out to
See Also
2010 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.