Difference between revisions of "1964 AHSME Problems/Problem 35"
(→See Also) |
(→See Also) |
||
Line 4: | Line 4: | ||
<math>\textbf{(A) }3:11\qquad\textbf{(B) }5:11\qquad\textbf{(C) }1:2\qquad\textbf{(D) }2:3\qquad \textbf{(E) }25:33</math> | <math>\textbf{(A) }3:11\qquad\textbf{(B) }5:11\qquad\textbf{(C) }1:2\qquad\textbf{(D) }2:3\qquad \textbf{(E) }25:33</math> | ||
+ | |||
+ | ==Solution== | ||
+ | Using Law of Cosines | ||
+ | and the fact that the ratio equals cos(a)/[cos(b)cos(c)] | ||
+ | B 5:11 | ||
+ | |||
==See Also== | ==See Also== | ||
Line 11: | Line 17: | ||
{{MAA Notice}} | {{MAA Notice}} | ||
− | |||
− | |||
− |
Revision as of 18:21, 18 April 2020
Problem
The sides of a triangle are of lengths , , and . The altitudes of the triangle meet at point . if is the altitude to the side of length , the ratio is:
Solution
Using Law of Cosines and the fact that the ratio equals cos(a)/[cos(b)cos(c)] B 5:11
See Also
1964 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 34 |
Followed by Problem 36 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.