Difference between revisions of "2020 AIME I Problems/Problem 1"

m (Problem)
Line 1: Line 1:
  
 
== Problem ==
 
== Problem ==
In <math>\triangle ABC</math> with <math>AB=BC,</math> point <math>D</math> lies strictly between <math>A</math> and <math>C</math> on side <math>\overline{AC},</math> and point <math>E</math> lies strictly between <math>A</math> and <math>B</math> on side <math>\overline{AB}</math> such that <math>AE=ED=DB=BC.</math> The degree measure of <math>\angle ABC</math> is <math>\tfrac{m}{n},</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n.</math>
+
In <math>\triangle ABC</math> with <math>AB=AC,</math> point <math>D</math> lies strictly between <math>A</math> and <math>C</math> on side <math>\overline{AC},</math> and point <math>E</math> lies strictly between <math>A</math> and <math>B</math> on side <math>\overline{AB}</math> such that <math>AE=ED=DB=BC.</math> The degree measure of <math>\angle ABC</math> is <math>\tfrac{m}{n},</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n.</math>
  
 
== Solution ==
 
== Solution ==

Revision as of 19:16, 12 March 2020

Problem

In $\triangle ABC$ with $AB=AC,$ point $D$ lies strictly between $A$ and $C$ on side $\overline{AC},$ and point $E$ lies strictly between $A$ and $B$ on side $\overline{AB}$ such that $AE=ED=DB=BC.$ The degree measure of $\angle ABC$ is $\tfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Solution

If we set $\angle{BAC}$ to $x$, we can find all other angles through these two properties: 1. Angles in a triangle sum to $180^{\circ}$. 2. The base angles of an isoceles triangle are congruent.

Now we angle chase. $\angle{ADE}=\angle{EAD}=x$, $\angle{AED} = 180-2x$, $\angle{BED}=\angle{EBD}=2x$, $\angle{EDB} = 180-4x$, $\angle{BDC} = \angle{BCD} = 3x$, $\angle{CBD} = 180-6x$. Since $AB = AC$ as given by the problem, $\angle{ABC} = \angle{ACB}$, so $180-4x=3x$. Therefore, $x = 180/7^{\circ}$, and our desired angle is \[180-4(\frac{180}{7}) = \frac{540}{7}\] for an answer of $\boxed{547}$.

-molocyxu

See Also

2020 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png