Difference between revisions of "2020 AIME I Problems/Problem 15"
m (→Solution) |
Cooljoseph (talk | contribs) m (→Solution) |
||
Line 52: | Line 52: | ||
Let points be what they appear as in the diagram below. Note that <math>3HX = HY</math> is not insignificant; from here, we set <math>XH = HE = \frac{1}{2} EY = HL = 2</math> by PoP and trivial construction. Now, <math>D</math> is the reflection of <math>A</math> over <math>H</math>. Note <math>AO \perp XY</math>, and therefore by Pythagorean theorem we have <math>AE = XD = \sqrt{5}</math>. Consider <math>HD = 3</math>. We have that <math>\triangle HXD \cong HLK</math>, and therefore we are ready to PoP with respect to <math>(BHC)</math>. Setting <math>BL = x, LC = y</math>, we obtain <math>xy = 10</math> by PoP on <math>(ABC)</math>, and furthermore, we have <math>KH^2 = 9 = (KL - x)(KL + y) = (\sqrt{5} - x)(\sqrt{5} + y)</math>. Now, we get <math>4 = \sqrt{5}(y - x) - xy</math>, and from <math>xy = 10</math> we take <cmath>\frac{14}{\sqrt{5}} = y - x.</cmath> However, squaring and manipulating with <math>xy = 10</math> yields that <math>(x + y)^2 = \frac{396}{5}</math> and from here, since <math>AL = 5</math> we get the area to be <math>3\sqrt{55} \implies \boxed{058}</math>. ~awang11's sol | Let points be what they appear as in the diagram below. Note that <math>3HX = HY</math> is not insignificant; from here, we set <math>XH = HE = \frac{1}{2} EY = HL = 2</math> by PoP and trivial construction. Now, <math>D</math> is the reflection of <math>A</math> over <math>H</math>. Note <math>AO \perp XY</math>, and therefore by Pythagorean theorem we have <math>AE = XD = \sqrt{5}</math>. Consider <math>HD = 3</math>. We have that <math>\triangle HXD \cong HLK</math>, and therefore we are ready to PoP with respect to <math>(BHC)</math>. Setting <math>BL = x, LC = y</math>, we obtain <math>xy = 10</math> by PoP on <math>(ABC)</math>, and furthermore, we have <math>KH^2 = 9 = (KL - x)(KL + y) = (\sqrt{5} - x)(\sqrt{5} + y)</math>. Now, we get <math>4 = \sqrt{5}(y - x) - xy</math>, and from <math>xy = 10</math> we take <cmath>\frac{14}{\sqrt{5}} = y - x.</cmath> However, squaring and manipulating with <math>xy = 10</math> yields that <math>(x + y)^2 = \frac{396}{5}</math> and from here, since <math>AL = 5</math> we get the area to be <math>3\sqrt{55} \implies \boxed{058}</math>. ~awang11's sol | ||
+ | |||
+ | == Solution 2 == | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2020|n=I|num-b=14|after=Last Problem}} | {{AIME box|year=2020|n=I|num-b=14|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 16:37, 12 March 2020
Note: Please do not post problems here until after the AIME.
Contents
Problem
Solution
The following is a power of a point solution to this menace of a problem:
Let points be what they appear as in the diagram below. Note that is not insignificant; from here, we set by PoP and trivial construction. Now, is the reflection of over . Note , and therefore by Pythagorean theorem we have . Consider . We have that , and therefore we are ready to PoP with respect to . Setting , we obtain by PoP on , and furthermore, we have . Now, we get , and from we take However, squaring and manipulating with yields that and from here, since we get the area to be . ~awang11's sol
Solution 2
See Also
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.