Difference between revisions of "2020 AIME I Problems/Problem 6"
(→Solution) |
|||
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
+ | |||
+ | |||
+ | Set the common radius to <math>r</math>. First, take the cross section of the sphere sitting in the hole of radius 1. If we draw the perpendicular bisector of the chord (the hole) through the circle, this line goes through the center. Connect the center also to where the chord hits the circle, for a right triangle with hypotenuse <math>r</math> and base <math>1</math>. Therefore, the height of this circle outside of the hole is <math>\sqrt{r^2-1}</math>. | ||
+ | |||
+ | The other circle follows similarly for a height (outside the hole) of <math>\sqrt{r^2-4}</math>. Now, if we take the cross section of the entire board, essentially making it 2-D, we can connect the centers of the two spheres, then form another right triangle with base <math>7</math>, as given by the problem. The height of this triangle is the difference between the heights of the parts of the two spheres outside the holes, which is <math>\sqrt{r^2-1} - \sqrt{r^2-4}</math>. Now we can set up an equation in terms of <math>r</math> with the Pythagorean theorem: <cmath>(\sqrt{r^2-1} - \sqrt{r^2-4})^2 + 7^2 = (2r)^2.</cmath> Simplifying a few times, <cmath>r^2 - 1 - 2(\sqrt{(r^2-1)(r^2-4)}) + r^2 - 4 + 49 = 4r^2</cmath> <cmath>2r^2-44= -2(\sqrt{(r^2-1)(r^2-4)})</cmath> <cmath>22-r^2=(\sqrt{r^4 - 5r^2 + 4})</cmath> <cmath>r^4 -44r^2 + 484 = r^4 - 5r^2 + 4</cmath> <cmath>39r^2=480</cmath> <cmath>r^2=\frac{480}{39} = \frac{160}{13}.</cmath> Therefore, our answer is <math>\boxed{173}</math>. | ||
+ | |||
+ | -molocyxu | ||
==See Also== | ==See Also== |
Revision as of 16:13, 12 March 2020
Note: Please do not post problems here until after the AIME.
Problem
Solution
Set the common radius to . First, take the cross section of the sphere sitting in the hole of radius 1. If we draw the perpendicular bisector of the chord (the hole) through the circle, this line goes through the center. Connect the center also to where the chord hits the circle, for a right triangle with hypotenuse and base . Therefore, the height of this circle outside of the hole is .
The other circle follows similarly for a height (outside the hole) of . Now, if we take the cross section of the entire board, essentially making it 2-D, we can connect the centers of the two spheres, then form another right triangle with base , as given by the problem. The height of this triangle is the difference between the heights of the parts of the two spheres outside the holes, which is . Now we can set up an equation in terms of with the Pythagorean theorem: Simplifying a few times, Therefore, our answer is .
-molocyxu
See Also
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.