Difference between revisions of "1981 AHSME Problems/Problem 21"
(Created page with "Problem 21 In a triangle with sides of lengths <math>a</math>, <math>b</math>, and <math>c</math>, <math>(a+b+c)(a+b-c) = 3ab</math>. The measure of the angle opposite the sid...") |
|||
Line 1: | Line 1: | ||
− | Problem 21 | + | ==Problem 21== |
In a triangle with sides of lengths <math>a</math>, <math>b</math>, and <math>c</math>, <math>(a+b+c)(a+b-c) = 3ab</math>. The measure of the angle opposite the side length <math>c</math> is | In a triangle with sides of lengths <math>a</math>, <math>b</math>, and <math>c</math>, <math>(a+b+c)(a+b-c) = 3ab</math>. The measure of the angle opposite the side length <math>c</math> is | ||
<math>\textbf{(A)}\ 15^\circ\qquad\textbf{(B)}\ 30^\circ\qquad\textbf{(C)}\ 45^\circ\qquad\textbf{(D)}\ 60^\circ\qquad\textbf{(E)}\ 150^\circ</math> | <math>\textbf{(A)}\ 15^\circ\qquad\textbf{(B)}\ 30^\circ\qquad\textbf{(C)}\ 45^\circ\qquad\textbf{(D)}\ 60^\circ\qquad\textbf{(E)}\ 150^\circ</math> |
Revision as of 14:33, 6 March 2020
Problem 21
In a triangle with sides of lengths , , and , . The measure of the angle opposite the side length is