Difference between revisions of "1954 AHSME Problems/Problem 21"

(Created page with "== Problem 21== The roots of the equation <math>2\sqrt {x} + 2x^{ - \frac {1}{2}} = 5</math> can be found by solving: <math> \textbf{(A)}\ 16x^2-92x+1 = 0\qquad\textbf{(B)}...")
 
 
Line 8: Line 8:
  
 
Make the substitution <math>t=\sqrt{x}</math>. Then <math>2t+\frac{2}{t}=5\implies 2t^2-5t+2=0</math>. Then <math>2x-5\sqrt{x}+2=0\implies 2x+2=5\sqrt{x}\implies (2x+2)^2=25x\implies 4x^2+8x+4=25x\implies 4x^2-17x+4=0</math>, <math>\fbox{C}</math>
 
Make the substitution <math>t=\sqrt{x}</math>. Then <math>2t+\frac{2}{t}=5\implies 2t^2-5t+2=0</math>. Then <math>2x-5\sqrt{x}+2=0\implies 2x+2=5\sqrt{x}\implies (2x+2)^2=25x\implies 4x^2+8x+4=25x\implies 4x^2-17x+4=0</math>, <math>\fbox{C}</math>
 +
 +
==See Also==
 +
 +
{{AHSME 50p box|year=1954|num-b=20|num-a=22}}
 +
 +
{{MAA Notice}}

Latest revision as of 00:29, 28 February 2020

Problem 21

The roots of the equation $2\sqrt {x} + 2x^{ - \frac {1}{2}} = 5$ can be found by solving:

$\textbf{(A)}\ 16x^2-92x+1 = 0\qquad\textbf{(B)}\ 4x^2-25x+4 = 0\qquad\textbf{(C)}\ 4x^2-17x+4 = 0\\ \textbf{(D)}\ 2x^2-21x+2 = 0\qquad\textbf{(E)}\ 4x^2-25x-4 = 0$

Solution

Make the substitution $t=\sqrt{x}$. Then $2t+\frac{2}{t}=5\implies 2t^2-5t+2=0$. Then $2x-5\sqrt{x}+2=0\implies 2x+2=5\sqrt{x}\implies (2x+2)^2=25x\implies 4x^2+8x+4=25x\implies 4x^2-17x+4=0$, $\fbox{C}$

See Also

1954 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png