Difference between revisions of "2005 Alabama ARML TST Problems/Problem 4"

m
Line 1: Line 1:
 
==Problem==
 
==Problem==
For how many ordered pairs of digits <math>\displaystyle (A,B)</math> is <math>\displaystyle 2AB8</math> a multiple of 12?
+
For how many [[ordered pair]]s of [[digit]]s <math>\displaystyle (A,B)</math> is <math>\displaystyle 2AB8</math> a [[multiple]] of 12?
 
==Solution==
 
==Solution==
  
We wish for <math>2000+100A+10B+8 \equiv 0 \pmod 12\rightarrow 4A+10B\equiv 8 \pmod 12\rightarrow 2A+5B\equiv 4 \pmod 6</math>. Thus <math>B\equiv 0 \pmod 2</math>. Let <math>B=2C\rightarrow A+2C\equiv 2 \pmod 3</math>; <math>C<5</math>,<math>A<10</math>, one of the eqns. must be true:
+
We wish for <math>2000+100A+10B+8 \equiv 0 \pmod {12}\Longleftrightarrow 4A+10B\equiv 8 \pmod {12} \Longleftrightarrow 2A+5B\equiv 4 \pmod 6</math>. Thus <math>B\equiv 0 \pmod 2</math>. Let <math>B=2C\rightarrow A+2C\equiv 2 \pmod 3</math>; <math>C<5</math>,<math>A<10</math>, one of the eqns. must be true:
  
 
<math>A+2C=2\rightarrow</math> 2 ways
 
<math>A+2C=2\rightarrow</math> 2 ways
Line 18: Line 18:
  
 
Total of 18 ways.
 
Total of 18 ways.
 +
 +
{{wikify}}
 
==See also==
 
==See also==
 
*[[2005 Alabama ARML TST]]
 
*[[2005 Alabama ARML TST]]
 
*[[2005 Alabama ARML TST/Problem 3 | Previous Problem]]
 
*[[2005 Alabama ARML TST/Problem 3 | Previous Problem]]
 
*[[2005 Alabama ARML TST/Problem 5 | Next Problem]]
 
*[[2005 Alabama ARML TST/Problem 5 | Next Problem]]

Revision as of 17:31, 17 November 2006

Problem

For how many ordered pairs of digits $\displaystyle (A,B)$ is $\displaystyle 2AB8$ a multiple of 12?

Solution

We wish for $2000+100A+10B+8 \equiv 0 \pmod {12}\Longleftrightarrow 4A+10B\equiv 8 \pmod {12} \Longleftrightarrow 2A+5B\equiv 4 \pmod 6$. Thus $B\equiv 0 \pmod 2$. Let $B=2C\rightarrow A+2C\equiv 2 \pmod 3$; $C<5$,$A<10$, one of the eqns. must be true:

$A+2C=2\rightarrow$ 2 ways

$A+2C=5\rightarrow$ 3

$A+2C=2\rightarrow$ 4

$A+2C=2\rightarrow$ 4

$A+2C=2\rightarrow$ 3

$A+2C=2\rightarrow$ 2 ways

Total of 18 ways.

Template:Wikify

See also