Difference between revisions of "2011 AIME I Problems/Problem 4"
Advancedjus (talk | contribs) (→Solution 2) |
Advancedjus (talk | contribs) (→Problem 4) |
||
Line 1: | Line 1: | ||
− | == Problem | + | == Problem == |
In triangle <math>ABC</math>, <math>AB=125</math>, <math>AC=117</math> and <math>BC=120</math>. The angle bisector of angle <math>A</math> intersects <math> \overline{BC} </math> at point <math>L</math>, and the angle bisector of angle <math>B</math> intersects <math> \overline{AC} </math> at point <math>K</math>. Let <math>M</math> and <math>N</math> be the feet of the perpendiculars from <math>C</math> to <math> \overline{BK}</math> and <math> \overline{AL}</math>, respectively. Find <math>MN</math>. | In triangle <math>ABC</math>, <math>AB=125</math>, <math>AC=117</math> and <math>BC=120</math>. The angle bisector of angle <math>A</math> intersects <math> \overline{BC} </math> at point <math>L</math>, and the angle bisector of angle <math>B</math> intersects <math> \overline{AC} </math> at point <math>K</math>. Let <math>M</math> and <math>N</math> be the feet of the perpendiculars from <math>C</math> to <math> \overline{BK}</math> and <math> \overline{AL}</math>, respectively. Find <math>MN</math>. | ||
− | |||
== Solution 1 == | == Solution 1 == |
Revision as of 17:41, 16 February 2020
Problem
In triangle , , and . The angle bisector of angle intersects at point , and the angle bisector of angle intersects at point . Let and be the feet of the perpendiculars from to and , respectively. Find .
Solution 1
Extend and such that they intersect line at points and , respectively. Since is the angle bisector of angle , and is perpendicular to , so , and is the midpoint of . For the same reason, , and is the midpoint of . Hence . But , so .
Solution 2
Let be the incenter of . Now, since and , we have is a cyclic quadrilateral. Consequently, . Since , we have that . Letting be the point of contact of the incircle of with side , we have thus
Solution 3 (Bash)
Project onto and as and . and are both in-radii of so we get right triangles with legs (the in-radius length) and . Since is the hypotenuse for the 4 triangles ( and ), are con-cyclic on a circle we shall denote as which is also the circumcircle of and . To find , we can use the Law of Cosines on where is the center of . Now, the circumradius can be found with Pythagorean Theorem with or : . To find , we can use the formula and by Heron's, . To find , we can find since . . Thus, and since , we have . Plugging this into our Law of Cosines formula gives . To find , we use LoC on . Our formula now becomes . After simplifying, we get .
--lucasxia01
Solution 4
Because , is cyclic.
Ptolemy on CMIN:
by angle addition formula.
.
Let be where the incircle touches , then . , for a final answer of .
See also
2011 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.