Difference between revisions of "2020 AMC 12B Problems/Problem 18"
(→Solution 2: 2 typos) |
Runyangwang (talk | contribs) |
||
Line 54: | Line 54: | ||
Solving for <math>y^2</math> gives <math>\boxed{\textbf{(B)}\ 8-4\sqrt{2}}</math> ~DrB | Solving for <math>y^2</math> gives <math>\boxed{\textbf{(B)}\ 8-4\sqrt{2}}</math> ~DrB | ||
+ | |||
+ | ==Solution 3(a little bit complex)== | ||
+ | Extend <math>FI</math>, and denote the intersection with <math>AB</math> as <math>K</math> | ||
{{AMC12 box|year=2020|ab=B|num-b=17|num-a=19}} | {{AMC12 box|year=2020|ab=B|num-b=17|num-a=19}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 00:16, 9 February 2020
In square , points and lie on and , respectively, so that Points and lie on and , respectively, and points and lie on so that and . See the figure below. Triangle , quadrilateral , quadrilateral , and pentagon each has area What is ?
Solution 1
Plot a point such that and are collinear and extend line to point such that forms a square. Extend line to meet line and point is the intersection of the two. The area of this square is equivalent to . We see that the area of square is , meaning each side is of length 2. The area of the pentagon is . Length , thus . Triangle is isosceles, and the area of this triangle is . Adding these two areas, we get . --OGBooger
Solution 2
Draw the auxiliary line . Denote by the point it intersects with , and by the point it intersects with . Last, denote by the segment , and by the segment . We will find two equations for and , and then solve for .
Since the overall area of is , and . In addition, the area of .
The two equations for and are then:
Length of :
Area of CMIF: .
Substituting the first into the second, yields
Solving for gives ~DrB
Solution 3(a little bit complex)
Extend , and denote the intersection with as
2020 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.