Difference between revisions of "2020 AMC 10B Problems/Problem 3"
Argonauts16 (talk | contribs) (→See Also) |
m (→Video Solution) |
||
Line 24: | Line 24: | ||
==Video Solution== | ==Video Solution== | ||
− | https://youtu.be/Gkm5rU5MlOU | + | https://youtu.be/Gkm5rU5MlOU (for AMC 10) |
+ | https://youtu.be/WfTty8Fe5Fo (for AMC 12) | ||
~IceMatrix | ~IceMatrix |
Revision as of 01:29, 8 February 2020
Problem 3
The ratio of to is , the ratio of to is , and the ratio of to is . What is the ratio of to
Solution 1
WLOG, let and .
Since the ratio of to is , we can substitute in the value of to get .
The ratio of to is , so .
The ratio of to is then so our answer is ~quacker88
Solution 2
We need to somehow link all three of the ratios together. We can start by connecting the last two ratios together by multiplying the last ratio by two.
, and since , we can link them together to get .
Finally, since , we can link this again to get: , so ~quacker88
Video Solution
https://youtu.be/Gkm5rU5MlOU (for AMC 10) https://youtu.be/WfTty8Fe5Fo (for AMC 12)
~IceMatrix
See Also
2020 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2020 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 2 |
Followed by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.