Difference between revisions of "2020 AMC 10B Problems/Problem 1"

(Created page with "==Problem 1== Problem <math>\textbf{(A)}\ \qquad\textbf{(B)}\ \qquad\textbf{(C)}\ \qquad\textbf{(D)}\ \qquad\textbf{(E)}\ </math> == Solution == Solution ==Video Solution==...")
 
(Problem 1)
Line 1: Line 1:
==Problem 1==
+
==Problem==
Problem
 
  
<math>\textbf{(A)}\ \qquad\textbf{(B)}\ \qquad\textbf{(C)}\ \qquad\textbf{(D)}\ \qquad\textbf{(E)}\ </math>
+
What is the value of
 +
<cmath>1-(-2)-3-(-4)-5-(-6)?</cmath>
 +
 
 +
<math>\textbf{(A)}\ -20 \qquad\textbf{(B)}\ -3 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 21</math>
 +
 
 +
==Solution==
 +
We know that when we subtract negative numbers, <math>a-(-b)=a+b</math>.
 +
 
 +
The equation becomes <math>1+2-3+4-5+6 = \boxed{\textbf{(D)}\ 5}</math>
  
 
== Solution ==  
 
== Solution ==  

Revision as of 15:25, 7 February 2020

Problem

What is the value of \[1-(-2)-3-(-4)-5-(-6)?\]

$\textbf{(A)}\ -20 \qquad\textbf{(B)}\ -3 \qquad\textbf{(C)}\  3 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 21$

Solution

We know that when we subtract negative numbers, $a-(-b)=a+b$.

The equation becomes $1+2-3+4-5+6 = \boxed{\textbf{(D)}\ 5}$

Solution

Solution

Video Solution

YouTube Link

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png